Hi-Stat img
□ ENGLISH
□ HOME
□ プロジェクト概要
組織図

概念図

スタッフ
□ 研究成果
ディスカッションペーパー

データベース
□ お知らせ
公募情報

研究会日程

過去の研究会と報告資料

レクチャーシリーズ

過去のレクチャーと報告資料

ニュースレター
□ リンク
一橋大学

一橋大学附属図書館

一橋大学経済研究所

社会科学統計情報研究センター

アジア長期経済統計プロジェクト

Global Economic History Network

政府統計ミクロデータの試行的提供

ICPSR データアーカイブ

AMU and AMU Deviation indicators

On the Effect of Nonstationary Initial Conditions
in Dynamic Panel Data Models




Kazuhiko Hayakawa


March, 2008


Previous paper Next paper
Abstract
In this paper, we consider dynamic panel data models with possibly nonstationary initial conditions. We derive the asymptotic properties of the GMM estimators with various kinds of instruments when both N and T are large, where N and T denote the dimensions of the cross section and time series. We find that when initial conditions are nonstationary and the degree of heterogeneity, which is measured by the variance ratio of individual effects to the disturbances, is large, the biases and variances of the GMM estimators become small. We demonstrate that this is because the correlation between the lagged dependent variable and instruments gets larger due to the unremoved individual effects. This implies that the instruments become strong when initial conditions are nonstationary and the degree of heterogeneity is large. For the purpose of comparison, we also derive the asymptotic properties of the within groups and the LIML estimators. Numerical studies are conducted to assess the properties of these estimators.
Download (964KB)
Copyright (C) 2003-2007 by Institute of Economic Research.All rights reserved.