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1 Introduction

Recent research points to an evident surge in innovative activity in the United

States over the past �fteen years.1 This is suggested by, among other things, a

sharp rise in patent applications and patent grants that started in the late 1980s

and has persisted through the end of the 1990s �a rise that has outpaced, by

a considerable margin, increases in public and private R&D spending. While a

large fraction of U.S. patent grants are awarded to foreign inventors, the fraction

obtained by domestic inventors has risen �and this fraction has risen partic-

ularly rapidly in �elds where patenting has grown most sharply. The recent

patent surge could potentially be explained by an increase in the propensity

of Americans to patent inventions, rather than an increase in the productivity

of American research and development, but the recent research of Kortum and

Lerner (1998, 2000, 2003) strongly suggests that recent trends in patenting and

related data are more consistent with the latter interpretation. If this conclu-

sion is correct, then it could help explain the widely observed increase in U.S.

TFP growth in recent years.2

But if American R&D productivity has increased, then that raises the ques-

tion of what factors are driving the increase.3 This paper attempts to assess the

importance of one possible contributing factor �increased knowledge spillovers

from U.S.-based academic science. Figure I shows that citations made by patents

granted in the United States to articles in the scienti�c literature increased very

rapidly from the mid 1980s through the late 1990s.4 Over this period, the

number of patents granted by the U.S. Patent and Trademark O¢ ce to U.S.

residents more than doubled, real R&D expenditures in the United States rose

by almost 40%, and global output of scienti�c articles increased by about 13%,

but patent citations to science increased more than 13 times.5 Many at the Na-

number 603).
1See Ja¤e and Lerner (forthcoming), Kortum and Lerner (1998), Kortum and Lerner

(2000), and Kortum and Lerner (2003).
2See Gordon (2000) and DeLong (2001).
3The work of Kortum and Lerner (2000) has stressed the potential role of venture capital-

linked �rms in improving U.S. R&D output.
4This graph does not break down growth in citations by the nationality of the inventor,

but data from the 2002 National Science and Engineering Indicators shows that the majority
of these citations are made by domestic patent applicants, and U.S.-based academic science is
disproportionately likely to be cited. The fraction of citations to science made to U.S. authors
has increased over this period. See also Narin et. al. (1997) and Hicks et. al. (2001).

5These data come from the 2002 edition of the National Science and Engineering Indica-
tors. The data on scienti�c article output may understate the growth in articles, but even
a substantial correction of the o¢ cial statistics would leave the basic message of Figure 1
essentially unchanged.
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tional Science Foundation and other U.S. science policy agencies �nd this graph

extremely interesting, because it seems to suggest �at least in some broad sense

�that academic science and industrial technology are �closer�than they used to

be. This could mean that publicly funded science is generating more spillovers

to industrial innovation than in the past.6 This, in turn, may have contributed

in important ways to the apparent surge of innovative activity in the United

States in the 1990s.

This positive interpretation of recent trends in the data is in�uenced by

the theoretical contributions of Evenson and Kislev (1976) and the more recent

analysis their work inspired, such as Adams (1990) and Kortum (1997). In this

general class of models, applied research is a search process that eventually ex-

hausts the technological opportunities within a particular �eld. However, basic

science can open up new �search distributions�for applied researchers, raising

the productivity and the level of applied research e¤ort � at least temporar-

ily. Viewed through this theoretical lens, the concurrence of rapid growth in

U.S. private R&D expenditures, even more rapid growth in patenting, mount-

ing evidence of an acceleration in TFP growth, and still more rapid growth

in the intensity with which U.S. patents cite academic science would all seem

to suggest a response to new technological opportunities created by academic

research. Not surprisingly, other advanced industrial nations are deliberately

trying to foster closer connections between university-based scienti�c research

and industrial R&D in conscious imitation of the �U.S. model.�

But this is not the only interpretation of recent data trends, and it is not

necessarily the correct one. Simply counting patent citations to science across

technological and scienti�c �elds, nations, and times, as prior researchers have

done, tells us little about the impact the citations (and the knowledge �ows that

they trace out) are having on the inventive productivity of the citing �rms and

organizations. This is a serious limitation to our current knowledge, because the

implications of increased citations for national technological progress, economic

growth, and welfare will be a function of the impact of the underlying knowledge

�ows on the research productivity of the recipient inventors.

This paper seeks to remedy this gap in our knowledge by combining new

theoretical work with new �rm-level empirical analysis. The paper introduces

a formal model of applied R&D, based on the pathbreaking work of Evenson

and Kislev (1976). Although the model is quite simple, it generates a number of

6This interpretation has been stressed in recent editions of the National Science and En-
gineering Indicators and in the recent work of Narin et. al. (1997).
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unambiguous predictions that can then be taken directly to our unique data set.

In this model, applied R&D is represented as a search process. Breakthroughs in

academic science can enrich the �search distributions�probed by �rms, leading

to an increase in the productivity of R&D spending. In our model, �rms di¤er

in their ability to bene�t from these breakthroughs in academic science.7 Thus,

academic breakthroughs have a di¤erential impact on the cross-section of �rms.

We measure the relative strength of the connection between academic science

and �rm invention by tracking the citations to scienti�c articles that appear in

the U.S. patents of our sample �rms. We possess such data for more than

1,200 �rms over the period 1983-1999. We use measures of patent quality and

total factor productivity, together with �rm-level measures of R&D spending,

to compute a number of di¤erent indices of R&D productivity.8 For �rms in the

pharmaceutical industry, broadly de�ned, we use �rm-level data on successful

product introductions to create an alternative measure of innovative output. We

�nd support for the predictions of the model, and we �nd that the measured

impact of academic science on research productivity is particularly strong in the

biotechnology and pharmaceutical sectors.

2 The Link Between Academic Science and In-

dustrial Innovation

Historical Perspective

>From their inception, publicly supported universities in the U.S. were focused

on training students in the �practical arts.�9 In the late 19th and 20th centuries,

the search for commercial applications of the preceding decades�scienti�c dis-

coveries led to the early creation within American universities of new engineering

disciplines, including chemical engineering, electrical engineering, and aeronau-

tical engineering. However, progress at the scienti�c frontier was still dominated

by European institutions until the cataclysm of World War II.

7The di¤erential degrees of �connectedness� to academic science that exist among major
�rms in the pharmaceutical industry, one of the most science-driven sectors, has been docu-
mented by the work of Cockburn and Henderson (2000) and Cockburn, Henderson, and Stern
(1999). Allowing for �rm heterogeneity along this dimension is therefore important for the
empirical relevance of our model.

8Data on R&D spending, TFP, and market value are drawn or calculated from �rm-level
accounting data available in Compustat, the Japan Development Bank Corporate Finance
data set, and related data sets for publicly traded companies.

9Rosenberg and Nelson (1994) provide an excellent study of the history of interaction
between American universities and industry.
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The large U.S. postwar investment in basic research, much of it concen-

trated in universities, and the mass migration of leading European scientists to

the United States quickly established America as the leading center of frontier

scienti�c research (Rosenberg and Nelson, 1994). The infusion of federal funds

was predicated on the notion that investment in basic science would eventually

lead to useful technological invention for use in both industry and in national

defense. However, early attempts to assess the strength of this connection in the

postwar era suggested that relationship between �frontier�academic science and

industrial invention, while obviously important, was neither close nor direct.10

Lessons from the Recent Literature

Drawing upon a wide range of data sources and methodological approaches, the

recent economics literature suggests that the linkage between frontier science

and industrial technology is stronger and more direct than in the past.11 Case

studies, manager interviews, and surveys have been used to assess the magnitude

of this impact, the channels through which it �ows, and changes in these factors

over time.12 These studies suggest that �rms perceive academic research to be

an important input into their own research process, though this importance dif-

fers widely across �rms and industries.13 A second stream of recent research has

undertaken quantitative studies of knowledge spillovers from academic research.

Ja¤e (1989) and Adams (1990) were early contributors to this literature. More

recently, Ja¤e et. al. (1993, 1996, 1998) have used data on university patents

and citations to these patents to quantify knowledge spillovers from academic

science.14 While patenting by universities has increased substantially in the

United States over the last twenty years, there is evidence that as the num-

10See, for example, Derek De Solla Price (1965) and Lieberman (1978). This view was
generally supported by the Defense Department�s ambitious �Project Hindsight� study of
the impact of basic scienti�c research on weapons development, which concluded that the
primary impact came not from science at the research frontier, but instead from �packed-
down, thoroughly understood, carefully taught old science,� such as that typically presented
in textbooks or university courses. See Sherwin and Isenson (1967), from which the quoted
phrase is taken, for a review of Project Hindsight.
11For a comprehensive literature review that covers relevant research beyond the economics

journals, see Agrawal (2001).
12 Important recent studies relying primarily on case study techniques and surveys include

Mans�eld (1995), Cohen et. al. (1994), Faulkner and Senker (1995), Gambardella (1995) and
Agrawal and Henderson (2002).
13While the channels by which �rms absorb the results of academic research vary across

industries, the Cohen et. al. (1994) study suggests that the formal scienti�c literature is, on
average, an important channel.
14Barnes, Mowery, and Ziedonis (1998) and Mowery, Nelson, Sampat, and Ziedonis (1998)

have undertaken a similar study for a smaller number of universities.
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ber of university patents has grown, the marginal quality of those patents has

declined.15

A related stream of research has undertaken quantitative analysis of university-

industry research collaboration. Contributors include Zucker et. al. (1998) and

Cockburn and Henderson (1998, 2000). A number of papers in this literature

have studied �start-up�activity related to academic science or academic scien-

tists, such as Zucker et. al. (1998) and Audretsch and Stephan (1996). Finally,

several recent studies have examined university licensing of university generated

inventions, such as Barnes et al. (1998), Mowery et. al. (1998), Thursby and

Thursby (2002), Shane (2000, 2001), and Lach and Schankerman (2003). While

the counts of licensed inventions have grown over time, there is also evidence

that, like patents, the marginal value of licenses has declined as their number has

increased (Thursby and Thursby, 2002). Furthermore, this stream of literature

suggests that inventions generated by universities are typically quite �embry-

onic� � bringing such inventions to the market requires extensive additional

investment by private �rms.

Using Patent Citations to Academic Science as Measures of Knowl-
edge Spillovers

This paper will use patent citations to academic papers to measure knowl-

edge spillovers between academic science and industrial R&D.16 As indicators

of knowledge spillovers from academia to the private sector, these data have

a number of advantages. The academic promotion system creates strong in-

centives for academic scientists, regardless of discipline, to publish all research

results of scienti�c merit. As a consequence, the top-ranked research universi-

ties generate thousands of academic papers each year. Similarly, inventors have

an incentive to patent their useful inventions, and a legal obligation under U.S.

patent law to make appropriate citations to the prior art �including academic

science.

The recent research discussed in previous paragraphs indicates that, in re-

sponse to the Bayh-Dole Act in the U.S. and other public policy measures,

universities have increased the extent to which they patent the research of

university-a¢ liated scientists. They have also increased the extent to which

15See Ja¤e, Trajtenberg, and Henderson (1998) and Hicks et al. (2001).
16 In doing so, I am building on the work of Francis Narin and his collaborators, who have

pioneered the use of these data in large-sample �bibliometric�analysis. See Narin et al. (1997)
and Hicks et al. (2001) for recent examples of this work.
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they license these patented technologies to private �rms. Nevertheless, it is

clear to observers that only a tiny fraction of the typical research university�s

commercially relevant research output is ever patented, and only a fraction of

this set of patents is ever licensed.17 To illustrate this, Figure II shows the

trends over the 1988-1997 period in several alternative indices of university re-

search output and knowledge spillovers for one of the university systems in my

data set, the University of California, which includes nine separately managed

campuses and a number of a¢ liated laboratories. The �gure graphs university

patents by issue year (patents), invention disclosures by year of disclosure �ling

(invention disclosures), new licenses of university technology by date of contract

(licenses), the number of citations to previous university patents by issue year

of the citing patent (citations to UC patents), and the number of citations to

UC-generated academic papers by issue year of the citing patent (citations to

UC papers). Clearly, citations to papers are far more numerous than any other

indicator. This �gure suggests that patent citations to academic papers may

provide a much broader window through which to observe knowledge spillovers

from academic science to inventive activity than any available alternative.18

Citations to scienti�c articles can re�ect learning on the part of industrial

inventors through multiple channels. For instance, a �rm may learn about a

useful scienti�c discovery through an informal consulting relationship with an

academic scientist or through the hiring of graduate students trained by that

scientist rather than through a systematic and regular reading of the professional

scienti�c literature. Even in these cases, the con�uence of academic scientists�

interest in rapid publication of signi�cant discoveries combined with �rms�legal

obligation to cite relevant prior art means that citations to scienti�c articles

will often show up in patent documents, providing a �paper trail�of knowledge

di¤usion, even when the particular means of knowledge di¤usion was something

other than the publication itself.

What our methodological approach clearly fails to measure is the contribu-

tion of �old science� to industrial invention. A signi�cant component of the

consulting work undertaken by university faculty consists of helping private in-

dustry understand and apply well-established �or, �old��scienti�c techniques

17This result is also emphasized strongly in the interview-based evidence presented by
Agrawal and Henderson (2002).
18Other recent studies using data on patent citations to scienti�c papers include work by

Fleming and Sorenson (2000, 2001) and Lim (2001). Neither of these studies focuses on the
large change in citations to academic science over the course of the 1990s, which is the focus
here.
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and engineering principles, rather than helping �rms incorporate the latest fron-

tier science into their research agendas. Likewise, recent science and engineering

graduates are often employed in functions that are quite far removed from the

scienti�c frontier, but are nevertheless quite economically important to the �-

nancial success of their employers. This contribution will be completely missed

by our approach. In such cases, there is no new patented invention incorporat-

ing recent science. But as the older literature on university-industry interaction

has stressed, the propagation of �old� scienti�c and engineering knowledge to

industry through training and consulting is a long-standing feature of the Amer-

ican university system. The new development stressed by the recent literature

is the closer relationship between technology and relatively recent science. It is

precisely this aspect of university-industry interaction that our methodological

approach will most closely re�ect.

Lessons of Previous Research Using Patent Citations to Academic
Science

Since this paper will focus on the use of patent citations to scienti�c papers

as an indicator of knowledge spillovers from academia, it is important to note

the lessons that have been learned from previous studies using these data. This

summary will necessarily be brief. For a more complete exploration of these

issues, the reader is referred to the papers cited in this section.

Perhaps the strongest �nding to emerge from these studies is the result

that patent citations to science are highly concentrated in a set of academic

disciplines and related technological �elds that we might refer to as the �bio

nexus.�19 Patents taken out in patent classes associated with pharmaceutical

products, medical devices, and biotechnology display a much higher propensity

to cite scienti�c papers than do patents in other �elds. Perhaps not surpris-

ingly, the academic disciplines within medicine and the life sciences traditionally

most closely associated with these technological �elds (molecular biology, vari-

ous �elds of clinical medicine, etc.) are the kinds of papers that are most likely

to be cited in patent documents. This is true even when one controls for the

large and growing number of �biotech�patents and the large and growing num-

ber of bioscience papers.20 If one looks outside the bio nexus, one sees evidence

of a secondary concentration of patent-to-paper citation activity in information

19See Narin et al. (1997), Hicks et al. (2001), Branstetter (2004), and Branstetter and
Ogura (2004).
20See Branstetter and Ogura (2004).
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technology, but it is much less pronounced than that within the bio nexus. To

the extent that knowledge spillovers from academic science are actually increas-

ing research productivity, one might expect this e¤ect to be concentrated in the

bio nexus. In the empirical work presented in this paper, we explicitly allow for

this impact to be di¤erentially stronger for �rms located in that nexus.

Second, the propensity of patents to cite science has risen substantially over

time. This is true even if one looks at patent-to-paper citation activity within

the bio nexus, controlling for changes in the volume and distribution across

�elds of both patenting and publishing. Some of this increase is attributable

to discrete changes in U.S. patent law and citation practice, but a substantial

body of statistical and qualitative evidence strongly suggests that it also re�ects

and increasing intensity of intellectual interaction between academic science and

industrial R&D, particularly within the bio nexus.

Third, citations to science are positively correlated with measures of patent

quality at the patent level. As we will note later, the micro literature on patents

has suggested several measures of patent �quality� � quantitative features of

the patent document �which have been demonstrated to be positively corre-

lated with the ex-post commercial and technological importance of the patent.

Three such measures include counts of ex-post (or �forward�) citations, counts

of claims contained in the patent document, and the measure of �generality�

proposed by Henderson, Ja¤e, and Trajtenberg (1998). This latter measure is

a quantitative index of the diversity of technological �elds across which ex-post

citations occur. An invention whose citations come from multiple technological

�elds can be thought of as having a more �general� impact than an invention

whose citations come from a single technological �eld. The formal de�nition of

the index is

Generalityi = 1�
NiX
k=1

�
Ncitingik
Ncitingi

�2
where the numerator in the expression measures the number of citations to

patent icoming from patent class k, while the denominator measures the total

number of citations to patent iacross all classes.

Various studies, including Branstetter (2004), have shown that patent cita-

tions to science are positively and signi�cantly correlated with all these measures

of quality. At the patent level, it is di¢ cult to give this correlation a causal in-

terpretation, but it is suggestive nonetheless.21

21This �nding is also consistent with the work of Nagaoka (2004) and Sorenson and Fleming
(2001).
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Finally, while the received literature has focused on the patent-to-paper ci-

tation activity of patents generated by U.S.-based inventors, some evidence sug-

gests broadly similar patterns in the behavior of innovative �rms based outside

the U.S., particularly Japanese �rms. Branstetter and Ug (2004) undertake a

detailed study of the patterns of citations to academic science found in the U.S.

patents of a sample of Japanese �rms. They �nd patterns broadly similar to

those in the patents of U.S.-based inventors, although the average propensity

to cite science tends to be lower for Japan-based inventors than for U.S.-based

inventors when one conducts comparisons within patent classes.22 Relatively

speaking, the same concentration in the �bio nexus� and the pronounced in-

crease over time in the propensity to cite evidence is clear in the Japanese data.

Complementing our own �ndings, Nagaoka (2004) �nds a positive relationship

between patent citations to science and the �value�of patents, as measured by

ex-post citations, using a sample of U.S. patents granted to U.S. and Japanese in-

ventors in the information technology sector. Work by Hicks (1993), Kobayashi

(1998, 2003), Odagiri (1999), Pechter (2000, 2001), and Walsh and Cohen (2004)

also suggests a strengthening link between Japanese industrial R&D and acad-

emic science in the 1980s and 1990s, even in the absence of formal mechanisms

for technology transfer between academia and industry until the late 1990s. A

preliminary study of the citations found in Japanese documents undertaken by

Tamada et al. (2003a, 2003b) suggests that the patterns similar to those found

in the U.S. patents of Japanese �rms.

3 Theoretical Model

This assumes a �rm deciding how many draws to make based only on basic

science utilization, patentability requirement and cost of draws. There is no

dynamic consideration. Draws are chosen to maximize marginal pro�t from

expected number of patents. This has advantage of being consistent with pooled

data. Patentability requirement only needs to be common to all �rms within

an industry, within a period.

Applied research undertaken by a �rm i in industry j in period t is n in-

dependent draws from distribution f( � j�) (as in Evenson and Kislev (1976)).
Parameter � is the level of basic science utilized. This would depend on the level

of basic knowledge available, �, and rate at which a particular �rm uses basic

22Nagaoka (2004) �nds the same pattern.
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science, �, such as � = �� . The latter would be common across all �rms while

� is �rm speci�c and may even be endogenous. Distribution with � �rst-order

stochastic dominates distribution with �0 < � i.e.,

F (�j�) � F (�j�0) for all �:

Each period, �rm makes n draws resulting in n realizations, xl; x2; : : : ; xn. A

new technology (a draw) will become a patent if it is above the minimum re-

quirement for patentability (novelty, non-obviousness) denoted y. The number

of patents, N given n draws is equal to number of draws equal to or greater

than y. The distribution of N is,

Prob(N = kjy; �; n) = n!

k!(n� k)! [1� F (yj�)]
k
[F (yj�)]n�k :

The expected number of patents given ndraws is,

E[N jy; �; n] =
nX
k=1

n!

k!(n� k) ! [1� F (yj�)]
k
[F (yj�)]n�k = n [1� F (yj�)] : (1)

Lemma 1. Expected number of patents is increasing in number of draws (n) and
level of basic science utilization (�) and decreasing in patentability requirement

(y).

Proof. 1 � F (yj�) is increasing in � from �rst-order stochastic dominance as-

sumption. Cumulative distribution F (yj�) is increasing in y.

Optimal behavior

A �rm�s period t instantaneous pro�t is,

�t = ptQ(Kt; Lt; St)� wtLt � rtKt; (2)

where St is the stocks of patents accumulated by the �rm up to period period

t� 1. That is, using N� as the patents acquired in period � , stock available in
period t is,

St =
X
��t�1

N� :
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Output at time t, depends on patents on the stock of patent as well as labor

and capital. A �rm maximizes

Vt = �t + Et[�t+1]� wtLt � rtKt � ctnt;

where nt is the number of draws that determine distribution number of patents

to be acquired this year, Nt. The problem can be separated into the contem-

poraneous part, choosing Lt and Kt to maximized �t, and, investment for the

future,

Et[�t+1]� ctnt:

We can approximate the �rst term by,

Et[
@�t+1
@St+1

Nt];

using dS = St+1 � St = Nt. Note that since capital and labor are chosen

optimally each period, the Envelope Theorem implies that the marginal pro�t

from new stock of patents is equal to the marginal revenue. Furthermore if we

assume @�t+1
@St+1

is independent of St+1 (i.e., �t+1 is linear in St+1) then the �rm

chooses nt to maximize,

�tE[Nt]� ctnt; (3)

where �t =
@�t+1
@St+1

.

Now we are ready to analyze the optimal behavior of �rm i in industry j in

period t taking into account how distribution of new patents depend on basic

science access. Basic science utilization is determined by the amount of basic

science available at that time, �ijt and how well the �rm as able to access it,

�ij , so that �ijt = �ij�jt. The patentability requirement is yjt.

The cost of n draws is cijt(n). E[N ] patents correspond to �ijtE[N ] dollars

of pro�ts where �ijt is the marginal pro�t in (3). Firm i chooses n�ijt, the

optimal number of draws, to maximize,

�ijtE[N jyjt; �ijt; n]� cijt(n);

subject to a capacity constraint,

n � �ijt:

This is additional pro�t from the new patents since the total �rm pro�t would

11



depend on all patents owned. Since we are counting a �ow of patents (not

accumulation of patents), �E[N ] is extra pro�t from these new patents.

We consider two di¤erent forms of the cost function:

(1) cijt(n) = cijtn with cijt < 1� F (yjtj�jt),

(2) c0ijt(n) > 0, c
00
ijt(n) > 0 .

We immediately have the following for case (1),

Lemma 2. If cijt(n) = cijtn and cijt < 1� F (yjtj�ijt), then

n�ijt = �ijt:

The expected number of patents is,

E[N jyjt; �ijt; n�ijt] = Kijt

�
1� F (yjtj�ijt)

�
:

The expected number of patents is increasing in basic science utilization,

controlling for capacity constraint. In particular, even if R&D remains at the

capacity level, basic scienti�c will be increasing patents and marginal pro�t.

The e¤ect on pro�t will be more signi�cant when marginal pro�t of a patent

�itj is large, such as the bio-nexus.

With a more general case (2), the optimal number of draws satis�es the

�rst-order condition,

�ijt
�
1� F (yjtj�ijt)

�
= c0ijt(n

�): (4)

This is demonstrated in Figure 1. It is easy to show the following,

Lemma 3. When the cost function is strictly increasing and convex (case (2)),
the optimal number of draws, n�ijt = n�ijt(yjt; �ijt) is decreasing in yjt and in-

creasing in �ijt and �ijt. The expected number of patents is,

E[N jyjt; �ijt; n�ijt] = n�ijt(yjt; �ijt)
�
1� F (yjtj�ijt)

�
:

The expected number of patents is decreasing in yjt and increasing in �ijt and

�ijt.

Generally, we can say the following,

12



Proposition 1. 1. Greater scienti�c research utilization implies greater ex-

pected number of patents.

2. The e¤ect will be larger for industries where each patent generates larger

pro�ts.

4 Data Description

We measure the relative strength of the connection between academic science

and �rm invention by tracking the citations to scienti�c articles that appear

in the U.S. patents of our sample �rms. We possess such data for more than

1,200 patent-generating �rms over the period 1983-1999. This group of �rms

includes a substantial number of technology-intensive �rms based outside the

U.S. that are extensive users of the U.S. patent system. For example, the

database contains information on more than 300 Japanese �rms and more than

200 �rms based in Western Europe. From the NBER Patent Citation database

documented in Hall et al. (2001), we obtain information on the complete set of

patents granted to these �rms by the U.S. Patent and Trademark O¢ ce between

1983 and 1999.

The NBER Patent database allows us to construct, for each patent, measures

of the quality and technological impact of the patented invention. The micro

literature on patents has suggested several measures of patent �quality��quan-

titative features of the patent document �which have been demonstrated to be

positively correlated with the ex-post commercial and technological importance

of the patent. Three such measures include counts of ex-post (or �forward�)

citations, counts of claims contained in the patent document, and the measure

of �generality�proposed by Henderson, Ja¤e, and Trajtenberg (1998). We can

thus construct for each �rm a count of the number of patents taken out in each

year which is weighted by the ex-post citations these patents receive. Because

we only observe patents granted up to the end of 1999, we cumulate these patent

citations over a four-year window from the date of grant. Earlier research has

suggested that the number of citations received in the �rst four-to-�ve years

after grant is indicative of the total number of citations eventually received over

much longer windows.

In the same manner, we can construct annual counts of patents where the

patents are weighted by the number of claims contained in the patent applica-

tion. We can also measure the average �generality�of a �rm�s cohort of patent

13



applications in a given year, and use this as an additional measure of patent

quality. For pharmaceutical �rms, an additional measure can be employed. It is

possible to identify particular patents and groups of patents that are associated

with medical treatments that have been formally approved by the FDA and

are currently being sold in the market. While the linkage between patents and

products is generally not available in most industries, it is available for phar-

maceuticals and related sectors. Thus, we can present regressions in which the

outcome measure is the number of patents per (application) year that eventually

lead to actual approved products. This provides a measure of research output

that is much more closely related to consumer welfare and social surplus than

the other patent-based measures described above.23

The NBER Patent Citation database does not include information on patent

citations to academic science. These data were purchased from CHI Research,

which provided them to us under a contract that severely restricts data access.

These data were generated in the following way. CHI Research scans the elec-

tronic records of the U.S. PTO, obtaining all citations to patent and non-patent

prior art listed on the front page of the patent application. It then uses pro-

prietary software to clean and standardize the citations to non-patent prior art,

using, for instance, a standard set of scienti�c journal names. For the subset

of scienti�c journals tracked by the Institute for Scienti�c Information�s Science

Citation Index, we were able to recover information on the article cited, includ-

ing the exact reference and the scienti�c �eld into which the article could be

classi�ed. For the majority of these articles, we were also able to obtain data

on the authors and the authors�institutional a¢ liations at the time of author-

ship.24 The information on scienti�c content and author identity is not used

in the analysis presented in this paper, but it will be the focus of further work

described in the concluding section.

Publicly traded �rms in the United States have been required to disclose their

annual R&D spending since the early 1970s. As a consequence, for each publicly

traded U.S.-based �rm in our data set, we can generally obtain reasonably high

quality data on total R&D spending by �rm �scal year. The same accounting

requirements do not generally exist elsewhere in the OECD. However, prior

23These data were provided to the author by Frank Lichtenberg. They are based on pro-
prietary IMS data.
24 Information on author a¢ liation was obtained separately by matching the full article

citation to author information in the Science Citation Index for the years 1980-1997. The
patent and paper years do not overlap exactly, due to di¤erences in data availability. As a
consequence, institutional a¢ liation data are only available for about 75% of the cited articles.
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research has suggested a number of publicly available data sources that seem

to provide reasonably accurate R&D data for selected �rms based in Japan

and Western Europe.25 These data sources are employed in the current paper.

We note that patent data exist for many entities for which reasonable R&D

could not be obtained, limiting the cross-sectional dimension of our database

and biasing the sample toward larger, publicly traded �rms.

In addition to R&D spending, we can obtain from publicly available data

sources on listed companies information on total sales, total employment, and

capital stock. Data for U.S. �rms is taken from COMPUSTAT. Data for

Japanese �rms is generally taken from the Development Bank of Japan Cor-

porate Finance Database. Data on Western European �rms comes from Datas-

tream, Osiris, and Compustat Global. These data can be used in a production

function framework to estimate the impact of changes in citation intensity on

productivity.

5 Econometric Analysis at the Firm Level

Discussion of trends in citations data, such as that shown in Figures I and II, is

of limited interest unless the knowledge spillovers indicated by these citations

are actually enhancing the research productivity of the �rms and other orga-

nizations that receive them. Are innovators learning from academic science in

such a way that they are able to produce more inventions or better inventions

than they otherwise could? To evaluate this question, we need quantitative

measures of the �quality�of patented inventions. This harkens back to the two

interpretations of the �patentability constraint�noted in the theory section. If

the U.S. Patent and Trademark O¢ ce could be relied on to consistently enforce

high standards of novelty, non-obviousness, and utility in making patent grants,

then we could expect that only inventions that materially advanced the state

of the art would be granted patents. In fact, a large body of evidence seems to

demonstrate that the U.S. PTO has not enforced standards in this way. The

typical patent grant tends to be of quite limited technological or commercial

value, and there is enormous skewness in the ex-post realized commercial value

of patented inventions.26 Thus, for our purposes, it may be of interest to look

25Data on Japanese �rm R&D spending is taken primarily from the annual surveys of R&D
spending conducted by Toyo Keizai and Nihon Keizai Shimbun and reported in the Kaisha
Shiki Ho and the Nikkei Kaisha Joho, respectively. Data on the R&D spending of Western
European �rms is taken from Osiris, Datastream, and Compustat Global.
26See Harho¤ et al. (1999).
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at a measure of patent output where patents are weighted by some measure of

quality, in order to produce a meaningful measure of inventive output that is

consistent with Proposition 1 derived in the theory section.

Because we observe the innovative output of the same �rm at di¤erent points

in time, we can, at least in principle, control for the �average research quality�

of the �rm�s R&D operation by using �rm �xed e¤ects. Conditioning on this

and on the level of R&D investment, is it true that an increase in the incidence

of citation of academic science in a �rm�s patents is strongly correlated with

an increase in the quality or quantity of that �rm�s patented inventions? If the

answer to this question is yes, we have evidence that the knowledge �ows from

academia to the sample �rms, indicated by citation counts, are really having a

positive impact on the �rms�research productivity. Using the approximations

used in (3), a potential econometric speci�cation for investigating this is the

following:

Qualit = �0 + �1lrndit + �2Citingit + �3lpit +
X
t

�tTt + �i + "it

The dependent variable will generally be a measure of the number of patents

�led by �rm i in year t, where the patent counts are adjusted in some manner

for their quality. For the purposes of this estimation, �rm patents are assigned

a date based on their application date rather than their grant date. Quality-

adjusted patent output is modeled as a function of R&D spending (lrnd), the

overall level of patenting (lp), a �rm ��xed e¤ect� (�i) and the number of

citations made in a patent cohort (Citing). Because we simultaneously control

for the level of patenting, the coe¢ cient on the Citing variable will be, in e¤ect,

measuring changes in the intensity with which successive patent cohorts cite

science. In our estimation, we also allow for a full set of year dummies (the �ts),

in order to incorporate changes in citations practices that may have a¤ected the

entire sample of �rms in a similar way. As an alternative dependent variable

for �rms in the �bio nexus,�we can also use our count of the number of patents

that eventually became FDA-approved products.

Measures of patent quantity and quality and new product introductions are

not the only measures of inventive output that could be used. Drawing upon

the �rm-level data in the COMPUSTAT, DBJ, and related databases databases,

we can also construct �rm level measures of total factor productivity. If we can

identify a positive e¤ect of citation intensity on these market-based measures
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of �rm innovative performance, we will have even stronger evidence that the

knowledge �ows tracked by patent citations are having a real, measurable im-

pact on the research productivity of citing �rms. To this end, we estimate a

simple Cobb-Douglas production function. based on the the formulation (2).

We approximate Lt+1, Kt+1 by those of period t. As explained after equation

(3), the regression is actually on sales. The estimated equation is

Qit = �0+�1lkapit+�2lempit+�3lrndit+�4Citingit�l+�5lpit�l+�i+
TX
t=1

�tTt + "it

We regress the log of real sales of �rm i in year t (Qit) on a measure of the log

of contemporaneous real capital stock (lkap), the log of employment (lemp), the

log of contemporaneous R&D spending (lrnd), and our science citation measure

(Citing).27 As before, we include as a control the size of the patent cohort that

produced the count of science citations (lp). In this context, lagging the science

citation measure and the corresponding patent measure may be important, for

reasons that we discuss below. We will allow for short lags of length l. As in

earlier regressions, we include �rm and year �xed e¤ects. In this context, a

linear �xed-e¤ects approach is appropriate. Here, the coe¢ cient on our science

citation term measures the contribution of learning from science to the �rm�s

productivity growth, because identi�cation comes from the correlation between

within �rm changes in productivity levels and within �rm changes in levels of

science citation.

Results for preliminary �rm level regressions are easily summarized. Coe¢ -

cients are reported in Table I. The �rst two columns of this table report results

using citation-weighted patent counts as the measure of innovative output. Be-

cause of the count nature of the dependent variable, the regression technique

used is the �xed-e¤ects negative binomial estimator developed by Hausman,

Hall, and Griliches. When this estimator is used, log-likelihood rather than R-

squared is reported as a measure of goodness of �t. As shown in column 1, for

the full sample, measures of science citation are not strongly positively corre-

lated with citation adjusted patent measures. On the other hand, the results for

the pharma/biotech/chemical subsample, given in column 2, suggest that the

measured impact of an increase in science citations, controlling for the number

of patents, is positive and statistically signi�cant. Because the log of science

27 Ideally, an output speci�cation should use an R&D stock measure rather than the �ow
measure introduced here. Preliminary investigations with an R&D stock measure, however,
generate results very similar to those reported here.
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citations is entered into the regression, the coe¢ cient has an elasticity interpre-

tation, and it implies that a 100% increase in science citations will result in a

roughly 8.5% increase in quality-adjusted patent output, given the same level

of R&D spending. This would seem to be a modest marginal impact, but the

reader should recall the substantial increase in the number of patent citations

to science that have been observed over the past �fteen years. The absolute

number of such citations has increased thirteen-fold since the mid-1980s.

Measures of science citation are positively and signi�cantly related to claims-

adjusted total patent counts, as shown in columns 3-4. Again, the dependent

variable here is a count variable �the number of patents weighted by the number

of claims in each patent �so �xed e¤ects negative binomial models are used to

estimate the impact of science citations on inventive output. The estimated

e¤ect is considerably stronger in the pharma/biotech/chemical subsample. In

fact, the marginal impact of science citations is more than twice as high.

In columns 5-6, the inventive output measure is the average �generality�

of patents taken out by �rm i in year t. Linear, �xed e¤ects regressions are

used here. The dependent variable is a ratio, so the coe¢ cient on the science

citations measure does not have an elasticity interpretation, as it does elsewhere

in the table. As the reader can see from the results shown in column 5, there

is relatively little impact of science citations on inventive output in the full

sample. However, as shown in column 6, there does appear to be a statistically

signi�cant positive e¤ect in the pharma/biotech/chemical subsample.

Results of regressions using measures of �patents that led to products�

show a very strong, very signi�cant e¤ect of science linkages on inventive out-

comes. This is shown in column 7, where the count data nature of the de-

pendent variable requires turning again to the �xed e¤ects negative binomial

speci�cation. Due to data restrictions, these results are only available for the

pharma/biotech/chemical subsample. The estimated coe¢ cient is quite large.

Controlling for the size of the patent cohort, a 100% increase in science citations

raises the number of successful product introductions by more than 50%!

In the last two columns of Table I, production function regressions �nd a

positive, signi�cant e¤ect of citations to science on �rm total factor productivity.

A comparison of the coe¢ cients in columns 8 and 9 suggests that the pro-

ductivity boost is substantially stronger in the biotech/chemical/pharmaceutical

subsample. These results need to be viewed with some caution, as capital ex-

penditures and R&D expenditures have not been de�ated with the appropriate

industry-level price indices. In addition, questions could be raised about the
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assumption, imposed here, that there is an essentially contemporaneous e¤ect

of invention quality on productivity. Where the patented invention protects a

process, it could be believed that the process is implemented as soon as the

patent is �led. However, many patents protect products, patents for new prod-

ucts tend to be taken out at a relatively early stage in the product development

process, and one could easily imagine that it takes time for even highly successful

new products to have a measurable impact on �rms�total revenue streams.

Taking that point seriously, Table II utilizes various lags of the science cita-

tion intensity measure in the production function speci�cation, drawing upon

data for the full sample. As can clearly be seen, the measured impact of an

increase in science citation intensity remains statistically robust, regardless of

which lag is used. We see this as useful con�rming evidence of a real impact

of knowledge spillovers from academic science on invention that translates into

measurable gains in �rm revenues.

Given the interest of participants in this conference in the relevance of these

�ndings to Japanese �rms, we o¤er evidence on a subsample of Japan-based

R&D performing �rms in Table III. A criterion for inclusion in our sample

is that �rms patent extensively in the U.S., so we cannot claim that this set

of Japanese �rms, which numbers just over 300, is representative of Japanese

manufacturing. However, given that Japanese R&D spending and patenting

tends to be dominated by a relatively small number of relatively large �rms, our

sample is likely to be re�ective of trends in that subset of �rms that contribute

disproportionately to technological innovation in Japan.

Despite the widespread belief that Japanese �rms are insu¢ ciently connected

to university research, either in Japan or elsewhere, that that the lack of con-

nection to university science has been a major factor in Japan�s alleged lack

of competitiveness over the last ten years, our empirical results suggest a rela-

tionship between the intensity of citation of academic science and productivity

growth within our sample of Japanese �rms. The coe¢ cients are positive, sta-

tistically signi�cant, and robust to the use of alternative lags. However, we note

that the point estimates are smaller than those obtained for the full sample,

which is dominated by U.S. �rms.
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6 Conclusions and Extensions

What is driving the remarkable increase over the last decade in the propensity

of patents to cite academic science? Does this trend indicate that stronger

knowledge spillovers from academia have helped power the surge in innovative

activity in the U.S. in the 1990s? This paper has sought to shed light on these

questions.

Recent research cited in this paper provides support to the notion that the

nature of U.S. inventive activity, and, perhaps, inventive activity elsewhere in

the industrialized world, has changed over the sample period, with an increased

emphasis on the use of the knowledge generated by university-based scientists in

later years. The timing of this change corresponds closely to a marked increase

in patenting by U.S.-based entities, suggesting that knowledge spillovers from

academic science may have been a signi�cant factor contributing to the surge

in U.S. industrial innovation.

In this paper, we have endeavored to make two intellectual contributions to

this literature. First, we have presented a simple model of the R&D process,

based on the pioneering work of Evenson and Kislev (1976), which shows how the

research productivity of individual �rms can be a¤ected by knowledge spillovers

from academic science. This model delivers unambiguous predictions about the

relationship between a �rm�s use of academic science in its innovative activities

and research productivity.

We then seek to test these predictions with �rm level data for roughly 1,200

patent-generating entities. Taken as a whole, our results generally suggest the

possibility of a strong link between citation to science and inventive productivity,

even when controlling for R&D investment. This link appears to be signi�cantly

stronger within the set of technical �elds and related scienti�c disciplines that

we have dubbed the �bio nexus.�

More could be done to assess the extent to which the link in the data be-

tween citation of science and research productivity is a causal one. A particularly

promising approach may one suggested by Azoulay, Ding, and Stuart (2004).

These authors use recent advances in biostatistics to re�ne the �di¤erence in

di¤erences� estimation that has become so popular in the recent economet-

rics literature. This method, called Inverse Probability of Treatment Weighted

(IPTW) estimation, generalizes so-called �propensity score�techniques for com-

paring citing and non-citing �rms, allowing for �selection�of �rms into research

areas proximate to academic science based on a number of observable charac-
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teristics. We believe that implementation of this class of techniques will allow

us to go beyond documentation of a suggestive statistical association to make

stronger claims regarding causality.

While it is useful to show a statistically robust association between science

citations and productivity across a broad range of �rms and industries, we also

believe that much could be learned by narrowing our focus. The original Even-

son and Kislev model, and much of the work that followed from it, attempted to

map out the impact of a discrete scienti�c breakthrough on both optimal R&D

investment and its marginal productivity over time. This perspective allows for

a richer, more dynamic model than the simple one employed here.

In this paper, we have abstracted from this potentially richer set up, in

part because our patent-generating �rms are being hit by multiple �scienti�c

opportunity� shocks at once, making the identi�cation of the dynamic e¤ects

problematic. However, given the size and diversity of our sample of innovating

�rms, and the fact that we can identify the individual scienti�c papers being

cited, it is quite possible that we could focus our attention on a narrower subset

of �rms, over a shorter period of time, that are responding primarily or exclu-

sively to a single major scienti�c breakthrough. Observation of this group of

�rms and their patenting activity before and after the shock would allow us to

trace out the dynamics of the richer model and also more exactly identify the

� parameter stressed in our simpler version.
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