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ABSTRACT

This paper is concerned with the estimation of the autoregressive parameter of dynamic
panel data models. We propose a bias-corrected GMM estimator whose bias is smaller
than that of many existing GMM estimators. And we propose a small sample corrected
estimator of the variance in order to reduce the size distortion of the Wald test. These
estimators are easy to calculate and do not require preliminary estimates. The Monte
Carlo experiments indicate that in terms of both bias and size distortion, the bias cor-
rected estimator outperforms Blundell and Bond’s (1998) system estimator even when

using Windmeijer’s (2005) correction of the estimated variance of the system estimator.
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1 INTRODUCTION

Dynamic panel models are used to examine dynamic relationships in panel data and
include a lagged dependent variable as a regressor. A frequent problem encountered in
estimating the parameters of dynamic panel models is that estimators are biased. For
example, in pure time series models, the OLS estimator of an autoregressive parameter
is known to have asymptotic bias of order 1/T, where T is the sample size. The problem
becomes more serious in panel data models because the presence of individual effects
causes correlation between a lagged dependent variable and error components. Therefore,
in the estimation of dynamic panel models, careful attention needs to be paid to small
sample bias.

In order to eliminate such bias, Anderson and Hsiao (1981) suggest using the in-
strumental variable method, which is based on the first difference of the model with a
lagged level variable as an instrument. Arellano and Bond (1991), however, show that
there are additional instruments that could be used but are not exploited by Anderson
and Hsiao (1981). Employing the generalized method of moments (GMM) approach,
they demonstrate that using these instruments yields efficiency gains. We will call the
GMM estimator proposed by Arellano and Bond (1991) the first differencing estimator.
An alternative GMM estimator was proposed by Arellano and Bover (1995), which is
based on the level of the model and uses lagged differenced variables as instruments. We
will refer to this estimator as the level GMM estimator. Building on these two studies,
Blundell and Bond (1998) argue that the use of both instruments - those proposed by
Arellano and Bond (1991) and those proposed by Arellano and Bover (1995) - results
in a dramatic gain in efficiency. In their Monte Carlo experiment, they show that their
approach has smaller bias than the first differencing estimator. We will call Blundell and
Bond’s (1998) estimator the system GMM estimator.

Unfortunately, the system GMM estimator does not always work well. Bun and Kiviet
(2005) show that the bias of the system estimator becomes large when the autoregressive
parameter is close to unity and/or when the ratio of the variance of the individual effect
to that of the disturbance departs from unity. They also show that the system estimator
has a bias of the order 1/N, where N is the number of individuals. This mean that even
when the sample size T is sufficiently large, the system estimator still exhibits a bias as

long as N is small. Finally, Bun and Kiviet show that the biases of the first differencing



estimator and the level estimator are O(1/N).

The GMM procedure suffers from an additional problem. Although a gain in effi-
ciency is achieved by calculating the so-called two-step GMM estimator, the estimated
asymptotic variance of the two-step GMM estimator could be severely downward-biased
in small samples. This means that the Wald test based upon the two-step GMM proce-
dure exhibits severe size distortions. Several methods to correct the downward bias of
the variance of the two-step estimator have been proposed (see, e.g., Windmeijer, 2005).
However, Bond and Windmeijer (2005) find in their Monte Carlo simulations that when
the autoregressive parameter is close to unity, the system GMM procedure suffers from
size distortion even when Windmeijer’s (2005) correction is applied. One reason why
the system GMM with Windmeijer’s correction exhibits size distortions could be that
a preliminary estimate, i.e., the one-step system GMM estimate, of the autoregressive
parameter is needed for Windmeijer’s correction. Because, as mentioned above, the one-
step system estimator exhibits severe bias when the autoregressive parameter approaches
unity, Windmeijer’s correction would not work well in such a case.

There are ways other than the GMM approach which can reduce the bias and size
distortion. Kiviet (1995), Hanh and Kuersteiner (2002), Bun and Carree (2005) and
many others have constructed estimators for dynamic panel data models by modifying
the within class estimator. Among them, Bun and Carree (2005) has few restrictions
on the procedure. They argue that their estimator overcomes some of the drawbacks of
GMM estimators. However, their estimator crucially depends on the assumption that
the regressors are strictly exogenous with respect to the error term, while the GMM
estimators do not require such a restrictive assumption.

The purpose of this paper is to propose a bias-corrected GMM estimator of the autore-
gressive parameter and a finite sample corrected estimator of the variance. The proposed
estimators are based on the approach developed by Kurozumi and Yamamoto (2000)
and overcome some of the drawbacks of existing GMM estimators. First, the bias of our
bias-corrected estimator is o(57), while that of the system estimator is O(1/N). Second,
in contrast with Windmeijer’s (2005) approach, no preliminary estimate is necessary to
obtain our small sample corrected estimator of the variance. In addition, because the
bias-corrected estimator is based on a modified version of the system estimator, it is pos-
sible to relax the assumption of strict exogeneity. The Monte Carlo experiments indicate

that the bias corrected estimator outperforms the system estimator with Windmeijer’s



correction in terms of small sample bias and size distortion.

The remainder of this paper is organized as follows. Section 2 provides a review of
several GMM estimators, including the first differencing estimator, the level estimator
and the system estimator. Section 3 presents our bias-corrected estimator and our small
sample corrected estimator of the variance. Section 4 proposes an additional instrument
in order to further improve the efficiency of the estimator. Section 5 presents the Monte
Carlo results of a comparison of the finite sample performance of the bias-corrected
estimator and the system estimator with Windmeijer’s (2005) correction. Section 6 then
provides an empirical illustration consisting of the estimation of a panel data model of

employment dynamics. Finally, Section 7 offers some concluding remarks.

2 THE MODEL AND THE GMM ESTIMATORS

Consider a dynamic panel data process of the form
Yir = Qi1 + Bwiy + v + €, (1)

fori=1,--- ,Nand t=2,--- T, where « is an autoregressive parameter with || < 1,
w; 1s a set of exogenous variables, 7; is the unobservable individual effect and ¢;; is the
disturbance.

Although we allow for the inclusion of exogenous regressor w;; in our Monte Carlo ex-
periments and our empirical example, we develop our procedure using a model generated

by an autoregressive model of order 1 without exogenous variables,

Yit = Qi p—1 + Vi + it (2)

We consider model (2) because our approach is based on Blundell and Bond (1998), who

also use this model. We make the following standard assumption:

Assumption 1:

(i) 7; and e are independently distributed across i with mean 0 and variance a?y and

0.2, respectively.
(i) E(eyy) =0, fori=1,---Nand t =2,---,T.
(iii) E(cigis) =0, for i =1,---N and Vt # s.
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(iv) E(yngi) =0, fori=1,---N and t =2,---,T.
(V) yﬂ:lz—ia—i—wﬂ fOI‘i:l,...,N,

where w;; = Z;’io o’e;1_; and is independent of 7;.

Assumptions 1(i) - (iv) are the same as in Blundell and Bond (1998). Assumption
1(v) is the same as in Alvarez and Arellano (2003).

Stacking equation (2), we obtain
Yi = ax; + ug, (3)

where y; = (%3, e '?JiT)', T = (%2, T ayi,T—l), and u; = (Ui?,, T anT) with u; = v + €4
Because the bias-corrected estimator which we propose is based on a modified version
of the system estimator, we here briefly review the different GMM estimators, including

the system estimator. The GMM estimators are based on Assumption 1.

The first differencing estimator

In model (3), we find that the existence of the individual effect ; causes a severe correla-
tion between the regressor z; and the error term u;. In order to eliminate the individual

effect, Arellano and Bond (1991) take first differences of model (3):

and then show that

E(ZP'Au;) =0, (5)
where
Yi1
i Yi 0
ZiD _ (y 1Y 2) . ‘ (6)
0 (Yir - Yir—2)

Using (5) as the orthogonal conditions in the GMM, Arellano and Bond (1991) construct

the two-step first differencing estimator for a;, which is given by

n_ AL ZPAPZP Ay
 Az'ZPADZDIAg’

(7)



where Az = (Az),---Azly), Ay = (Ay), - Ay, ZP = (ZP',--- , Z]') and

N -1
AP = (% > Zf’MA@Zf)
i=1

with residuals from the one-step consistent estimator, Au;.

As mentioned by Blundell and Bond (1998), instrument (6) becomes invalid when «
is close to unity and/or 03/03 increases. To illustrate this feature, we take 7" = 3 as
an example. Then the first differencing estimator is reduced to an instrumental variable
estimator and the auxiliary regression which regresses the explanatory variable on the

instrumental variable can be expressed as
Ayio = Ty + 14

After some algebra, the probability limit of 7 is given by

—(1-a)/(1+a)
o2fo?+(1—-a)/(1+a)

75 (1—-a)

We find that as a gets close to unity or 03/03 becomes large, plim 7 gets close to zero.

Following Blundell and Bond (1998), we refer to this as the weak instrument problem.

The level GMM estimator

Arellano and Bover (1995) suggest to eliminate the individual effect from the instrumental
variables, while, as mentioned above, Arellano and Bond (1991) propose to eliminate it
from the model. Explicitly, Arellano and Bover (1995) consider the level model (3) and
then show that the variable

Ay 0
zZ; = : (8)

0 Ayir

which contains no individual effect because of first differencing, satisfies the orthogonal

conditions
E(ZFu;) = 0. (9)

Using (9), Arellano and Bover’s (1995) two-step level estimator is calculated as follows:

N aTIZLALZL,y

= “ 10
! ZAL 7Ly’ (10)



/ /

where 1 = (3317 .. .xN)/, Y= (yi, .. .ygv)/, gL — (Z{:/, . ,Zﬁ,’)’ and

1 & B
Al = (N > Zf’am;zf>
i=1
with residuals from the one-step consistent estimator, ;.

We can easily see that the level estimator is free from the weak instrument problem

in the case where 7' = 3. In this case, we obtain the auxiliary regression
Yiz = TAyi2 + 14
As Blundell, Bond and Windmeijer (2000) have shown,

~ P
™ —r

DN =

Because plim 7 does not approach zero, the instruments are always informative.

The system GMM estimator

Blundell and Bond (1998) argue that the GMM estimator with both moment conditions
(5) and (9) overcomes the weak instrument problem and achieves a gain in efficiency.
Combining (2) and (4), they use a system to construct a GMM estimator utilizing these
moment conditions. Their two-step system estimator is given by
o aVZSASZSy
O T 7S AS 7S

(11)
where 2% = [(Axlhxll)v T (ALL"N,JJIN)]', Yyt = [(Aylh yi)a T (Ay;\h y?v)]la Z5 = (ZIS7 T 7Z]€7)I7

ZP 0
=[5 2l )

and

—1
S 1 o St ~ax ~xl rz7S
=1

with residuals from the one-step consistent estimator, @ = (AAul, ul)'.



3 A BIAS-CORRECTED ESTIMATOR

3.1 Bias Correction

In order to reduce the bias and the size distortion of the Wald statistic in small samples,
we propose a correction method based on Kurozumi and Yamamoto (2000).
We estimate « using observations for period (t = 3,---T). Let T, the sample size, be

an even integer. We define the bias-corrected estimator &% as follows:

&BC

= 2a& — =(a; + arp), (13)

N

where & is a GMM estimator for the whole period and &; and &j; are estimators based
on a sample of the first period (¢ = 3,---,7/2 + 1) and of the second period (t =
T/2+2,---,T), respectively. Next, we define the asymptotic bias of &, ABIAS(&), as

E(& — «), ignoring the terms whose orders are lower than O(5).

Proposition 1: If the asymptotic bias of & follows

1

ABIAS(a) = % + o(7)

(14)

where ¢ is a finite-valued constant independent of T and N, the bias-corrected estimator

(18) has no asymptotic bias, i.e.,

1

ABIAS(aP%) = o(ﬁ).

Proof: We obtain the following relation:

ABIAS(6"”Y) = ABIAS (24 — %(&1 + ayr))

_2c 1 c 1 c 1
=NT anNagp) ana TN
= ol ).

The second equality holds because observations of the first period and second period have

sample sizes N and T'/2. This completes the proof of Proposition 1.

Remark 1: Tt should be noted that Proposition 1 can be proved even if

ABIAS(&) = (15)

fFIN)T



where f(N) is a function of N, which is less restrictive than (14). The proof, however, is
the same as that described above. We can set f(N) =1, f(N) = 1/N, and so on. If we
set f(N) = V/N, then we obtain the above proposition. For notational convenience, we

use (14) rather than (15) hereafter.

Remark 2: We note that when 7' is an odd integer, say 7" = 2m + 1, we can obtain the

bias-corrected estimator as follows:

~ BC ~ m m+1 _
a’t =2a — ay — a
2m +1 2m+1

1T,

where a is a GMM estimator for the whole period and &; and &;; are estimators based
on a sample of the first period (¢t = 3,---,m + 1) and of the second period (t = m +
2,--+,T), respectively. The reason why we let T be an even integer is just the notational

convenience.

Remark 3: We find that Proposition 1 can also be proved when @y is an estimator based
on a sample of one half of N individuals and &;; is based on a sample of the other
half. Note, however, that there are many ways to divide N individuals into halves. For
example, if N = 6, we can divide (1,2,3,4,5,6) into (1,2,3) and (4,5, 6), but also into
(1,3,5) and (2,4,6). Obviously, there are many other ways. The bias-corrected estimator
clearly depends on which division is used, but it is difficult to decide which division is the
appropriate one. We therefore do not consider such a division of individuals although it is

theoretically possible to construct the bias-corrected estimator based on such a division.

Proposition 1 above is the same as theorem 1(i) in Kurozumi and Yamamoto (2000)
except that they consider a possibly cointegrated vector autoregression and eliminate the
quasi-asymptotic bias! of the least squares estimator for the autoregressive parameter
matrices. They point out that (13) is similar to the jackknife estimator.

In the following subsection, we construct an estimator whose asymptotic bias is given
by (14).

3.2 The Bias-corrected Estimator and the Estimator of its Variance

The bias-corrected estimator (13) has no asymptotic bias as long as (14) holds. Unfor-

tunately, the asymptotic biases of the GMM estimators introduced in Section 2 are not

'For a definition of quasi-asymptotic bias, see Kurozumi and Yamamoto (2000).



given by (14). Explicitly, the first differencing estimator, the level estimator and the
system estimator have, as shown by Bun and Kiviet (2005), a bias of the order 1/N and
do not satisfy (14). We therefore propose an estimator whose bias is given by (14).
Consider a two-step system estimator with the particular instrument matrix 2, which
includes a linear transformation of Z° and at the same time reduces the number of

columns of Z5:

. 1'*,ZAZIy* (16)
“= A VAL A
where Z = (Zl, v ZN),,
[ Yi1 |
: 0
Yir—2
Zi = ’ ]_7
Ayio ( )
0 :
| Ayz‘,Tq

and
1 B
A= N~ Za a7
(NT; Zulul Z)
~ 1

with residuals from the one-step consistent estimator, 4} = (Au;, @;)’. The GMM esti-

7

mator (16) is based on the moment conditions
E(Zju;) = 0, (18)

where uf = (Au},u})’. We derive (18) by using (5) and (9). Before showing that the
asymptotic bias of estimator (16) is given by (14), we note that (16) is a consistent

estimator of a.
Proposition 2: Estimator (16) consistently estimates o as N and/or T grow.
Proof: See Appendix.

The above proposition shows that (16) is consistent both in terms of N and 7.2 Now,

we proceed to derive the asymptotic bias of (16) based on large N and T asymptotics.

Assumption 2:

2It should be noted that the first differencing estimator (6) and the system estimator (11) are incon-
sistent when both N and T are large (see Alvarez and Arellano, 2003, and Hayakawa, 2006a).



(i) Elo —w* < O((NT)7*/?), where w = plim © and k = 1, 2.
(i) E|wY? is bounded for some N > Ny and T > Ty.

(i) B|(N, Ziasar Z;/NT) Y% is bounded for some N > Ny and T > T, for k =1,2,

[at2

where P = ZAZ' and & = x*'Px*/NT.

We may note that Assumptions 2(i) and 2(ii) hold in some pure time series models.
Explicitly, it is known that if 1, follows a time series autoregressive model of order 1 with

normal disturbance,
EMA=\* =0O(T7*), where A\ =Y_, n?/T, A\ =plim A and k > 1 is a fixed integer
and

E|\"'[? is bounded for some T > T,.

Proposition 3: Under Assumption 2, the asymptotic bias of estimator (16) is given by
(14).
Proof: See Appendix.

Replacing & of equation (13) by estimator (16), we obtain the bias-corrected estimator

1
aP¢ =24 — 5(071 + ayr), (19)
where
x*'ZsASZ’y*
=———T2" s=11]
s T Z A7 T

with obvious notations y¥, z*, Z; and A;. For example, y; = (Az',z})" where z; =

(I'n, e aﬁlnv), with xp; = (%3, e ,?Ji,T/2+1)' and

- B
_ U ) .
Ar = (W ; Zh.u”u”Zh> )

where 17, = (AAth, u’;)" and Aug; and 4y; are the residuals from the one-step consistent
estimator in the first period. Propositions 1 and 2 show that bias-corrected estimator
(19) is consistent, while Propositions 1 and 3 show that bias-corrected estimator (19) has

no asymptotic bias.
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We now turn to the reduction of the size distortion. As mentioned in the introduction,
the Wald test based upon the two-step GMM procedure usually has large size distortion
in small samples. It is well known that one reason why the Wald test exhibits considerable
size distortion is the severe downward-bias of the estimated asymptotic variance of the
two-step GMM estimator. We therefore introduce a small sample corrected estimator

of the variance which is based on corollary 1 in Kurozumi and Yamamoto (2000) and is

given by
17(;“( <) 4Va7"( )+ Var(ozl)+ Var(an) (20)
— 2Var(a)x *IZAAw[A]ZIxIVaT(O{])
—2Va ( ) *IZAAw]]A[[Z}Il'}(I@”(OAqI)
+ VCLT(A) l‘;,Z]A[A,«A[[Z}I!L';I,
where
1
w ZIA*A*IZ i w ]~k o] Z 0 21
1= NT/2Z U UL 21, Awrr = NT/2Z iU U 2 (21)
1 A% A
AT = m ;Z;zuhu[,[zszﬂ (22)
Tar() = (——a¥ 747" B (23)
~\NT
and
Var(a,) = ! e 7 A7 B =111 (24)
ar(dy) = NT/QS , s=11I1I.

Proposition 4: The limiting distribution of the bias corrected estimator (13) is normal

and estimator (20) is a consistent estimator of its variance.
Proof: See Appendix.

Estimator (20) may appear complex, but, as mentioned by Kurozumi and Yamamoto
(2000), it is straightforward from the definition of %¢. Proposition 4 implies that the
conventional Wald test statistic, W, for the null of a@ = ag, has a chi-square distribution

with one degree of freedom:

TN(&BY — )2 a2

W = — X7- 25
Var(aBC) ! (25)

11



It should be emphasized that, unlike in Windmeijer’s (2005) approach, no preliminary
estimate is needed to calculate the small sample corrected estimator (20). In fact, there
are no preliminary estimates in (20).

Note that the bias correction method proposed in Section 3.1 is applicable to any
estimator as long as its asymptotic bias is given by (14) or (15). In fact, we can similarly
construct such estimators by arranging the instrument matrix for the first differencing
estimator or for the level estimator (see, e.g., Bun and Kiviet, 2005). This means that
based on a modified version of the first differencing estimator or the level estimator, we
can construct bias-corrected estimators. However, in our Monte Carlo experiments®, bias-
corrected estimator (19), which is based on a modified version of the system estimator,
worked better than bias-corrected estimators based on a modified version of the first
differencing estimator or the level estimator. We therefore do not consider bias-corrected
estimators based on a modified version of the first differencing estimator or the level

estimator.

4 AN ADDITIONAL INSTRUMENT

In this section, we propose an additional instrument in order to achieve a gain in efficiency.

Under Assumption 1, it can be shown that the following moment condition holds:

E(ZMu;) = 0, (26)
where
0
A2y
78 = s (27)
A2?Ji,T—1

3Because of space limitations, we omit the Monte Carlo results. They are available from the authors
upon request.
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To use (26) as the orthogonal condition in the GMM, we augment (17) with Z as

Yi1
: 0
Yir—2
Z; = Ayiz 0 : (28)
0 : Ay
i Ayir-1 Ayir-y

The bias of the GMM estimator (16) using instruments (28) instead of (17) is given by
(14). The derivation of the bias, however, is the same as that in Proposition 3 and we
therefore omit it here.

Next, we provide an illustration to check whether (27) suffers from the weak instru-
ment problem. Suppose we estimate « using the GMM procedure based only on the

moment condition (27). Taking 7" = 4 as an example, we obtain the auxiliary regression
Yis = TAPys3 + 74

Under Assumption 1, we obtain

N —a?>+2a—3
T )
—2(a — 2)(a — 3)

(29)

Therefore, even if « is close to unity, plim 7 # 0. Hence, the instrument does not suffer
from the weak instrument problem.

Before proceeding to the experiments, we summarize the bias correction procedure
proposed in this paper: For the whole period, the first period and the second period, we
calculate GMM estimator (16) using instruments (28). Then, we substitute these three
GMM estimators, i.e., (16) for the whole period, the first period and the second period,

BC

into (19), which gives the bias-corrected estimator & The small sample corrected

estimator of the variance of &8¢ is given by (20). In order to reduce the size distortion,

we calculate the Wald test statistic (25) which is based on (20).

5 EXPERIMENTS AND RESULTS

In this section, we carry out Monte Carlo experiments to investigate the small sample

properties of the bias-corrected estimator (19) and the Wald test statistic (25).
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5.1 A Process with No Exogenous Variable

The Monte Carlo Design

In this subsection we employ the following data generating process (DGP):
Yit = QY1+ Vi + €ty

where a € {0,.3,.5,.8,.9}, v; ~ N(O,a,%) is independent across i, £;; ~ N(0,1) is inde-
pendent across ¢ and ¢, and 03 € {.25,1,4}. We generate 7; and £;; such that they are
independent of each other. The sample sizes are T € {6,10,20}* and N € {50,100}.
We compute the bias-corrected estimator based on formulation (19) using instruments
(28). The Wald test statistic is given by (25). For comparison, we compute the two-step
system GMM estimator (11).> When we calculate the Wald test statistic based on the
two-step system GMM estimator, we apply Windmeijer’s (2005) correction® to the es-
timated variance of the two-step system GMM estimator in order to avoid a downward
bias of the estimated variance. Throughout the experiments, 1000 samples of size N
and T + 50 were generated with the last T" observations used for estimation and testing

purposes. The nominal size of the Wald test was set to 5%.

The Monte Carlo Results

Table 1 presents the finite sample properties of the system estimator and the bias-
corrected estimator in the case of 03 = 1. We can see that the system estimator has
nonnegligible bias. The mean of the system estimator, i.e. 2;0:01() &2 /1000, departs from
the true value of « especially when « is moderately large and/or the sample size N is
small. This experimental result is consistent with the analytical result of Bun and Kiviet
(2005). The bias of the bias-corrected estimator is smaller than that of the system es-

timator. Also, the size distortions of the Wald test statistic based on the bias-corrected

4Because we divide the whole period (t = 3,---,T) into a first period (t = 3,---,T/2+ 1) and a
second period (¢ = T/2+ 2,---,T), T has to be at least 6. If T < 6, a possible way to obtain the
bias-corrected estimator is to divide all individuals (i = 1,---,N) into two groups, as mentioned in
Remark 3.

*When T = 20, we compute the one-step system GMM estimator because we often fail to compute
AS. That is, we often fail to invert & S~ | Z8'ara;' Z§ numerically in the case of large T’ and small N.

SWindmeijer (2005) proposes a finite sample correction for the estimated variance of the two-step
GMM estimator based on the estimate of the difference between the finite sample and the asymptotic

variance.

14



estimator are moderate in comparison with those based on the system estimator with
Windmeijer’s (2005) correction. On the other hand, the standard deviation, which is a
measure of efficiency, of the system estimator is smaller than that of the bias-corrected
estimator. This may be due to the number of moment conditions. In fact, the number of
moment conditions used in the system estimator is (7' — 1)(7T' — 2)/2 + (T — 2), whereas
that used in the bias-corrected estimator is 3. Because the GMM estimators are known
to show efficiency gains as the number of instruments increases, the standard deviation
of the system estimator is smaller than that of the bias-corrected estimator. However,
there does not seem to much of a difference between these standard deviations unless «
is close to unity.

Further, Table 1 indicates that the bias and the size distortion of the system estimator
become large as T becomes large. For example, when a@ = 0.3, N = 50 and T = 6, the
mean of &° is 0.3 and the empirical size is 0.09. When T' = 20, however, the mean is 0.14
and the empirical size is 0.97. This experimental result suggests that the system estimator
performs well only when T is moderately small. One reason why the system estimator has
large bias in the case of large 7" may be that the system estimator is inconsistent when
both N and T tend to infinity, as shown by Hayakawa (2006a). In contrast, the bias-

corrected estimator performs better as T" becomes large. This is because the asymptotic

L

~7) as shown in Proposition 1.

bias of the bias-corrected estimator is o(

Tables 2 and 3 show the finite sample properties when 03 = 0.25 and 4, respectively.
These tables indicate that the bias and the size distortion of the system estimator become
worse than in the case of 03 = 1, which is consistent with the analytical result obtained
by Bun and Kiviet (2005). In contrast, the results of the bias-corrected estimator are not
very different from those in the case of 03 = 1 except for the case of a = 0.9.

In order to evaluate the effect of using the additional instrument introduced in Section
4, the column “s.d.4” in Table 3 provides the standard deviation of the bias-corrected
estimator using the instruments (17) instead of (28). Because the instruments (17) do
not include the additional instrument, the comparison of the “s.d.” of the bias-corrected
estimator and “s.d.4” allows us to evaluate the effect of the additional instrument. Table
3 indicates that when we do not use the additional instrument, the standard deviation
of the bias-corrected estimator becomes considerably large when o = 0.8 or 0.9. This

means that the additional instrument helps to improve the efficiency of the bias-corrected

estimator.

15



Table 1: The numerical performance for the case of 03 =1

a | N | T | System Estimator BC Estimator
mean s.d. size | mean s.d. size

0.0 50 | 6 | 0.00 0.10 0.10 | 0.00 0.11 0.06
10 | -0.04 0.07 0.26 | 0.00 0.07 0.06
20 ] -0.11 0.04 0.88 ] 0.00 0.05 0.06
100 | 6 | 0.00 0.06 0.07]-0.01 0.08 0.06
10 | -0.01 0.05 0.12 ] 0.00 0.05 0.05
201 -0.05 0.03 0.70 | 0.00 0.03 0.05
03] 50 |6 | 030 011 0.09| 029 0.14 0.07
10 1 0.23 0.08 0.30] 0.30 0.09 0.05
20 0.14 0.05 0.97| 0.30 0.05 0.07
100} 6 | 0.31 0.07 0.08| 0.29 0.10 0.06
101 0.28 0.05 0.13] 0.30 0.06 0.05
20 0.22 0.04 0.84 | 0.30 0.03 0.05
05] 50 | 6 | 050 0.12 0.10| 049 0.16 0.07
101 0.43 0.09 0.28 | 0.50 0.10 0.06
201 032 0.05 0.99] 0.50 0.06 0.07
100} 6 | 051 0.08 0.09| 049 0.11 0.06
10 | 0.47 0.06 0.14] 0.50 0.06 0.05
20 0.40 0.04 0.88] 0.50 0.04 0.05
081] 50 | 6 | 083 0.12 0.16 | 0.80 0.22 0.08
101 0.78 0.08 0.15| 0.79 0.13 0.08
20 0.68 0.06 0.82] 0.80 0.07 0.08
100 6 # 082 0.09 0.18| 0.79 0.15 0.08
10| 0.80 0.06 0.12] 0.80 0.08 0.06
20 0.73 0.05 0.60 | 0.80 0.05 0.05
09150 |6 094 008 021 092 0.26 0.07
101 092 0.05 0.22] 0.89 0.18 0.09
20 0.88 0.04 0.23] 0.89 0.10 0.10
100 6 | 094 0.08 0.24] 0.90 0.20 0.09
10 093 0.04 0.24| 089 0.12 0.07
201 0.90 0.03 0.20 ] 0.90 0.06 0.09

Note: The headings “System Estimator” and “BC Estimator” stand for the two-step system
GMM estimator and the bias-corrected estimator given by (19). The column “mean” reports
the sample mean of the estimators, i.e., 271“0:010 &, /1000. The column “s.d.” reports the standard
deviation of the estimators, i.e., (2;0:010 a2 /1000 — (271"(;010 Gy /1000)2)1/2. The column “size”
reports the empirical size of the Wald test for the null hypothesis a = 0,.3,.5,.8,.9, at a
significance level of 5%. Simulations are based on 1000 replications. The individual effects ~;

and the disturbance ¢;; are generated from ¢.7.d.N(0,1).
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Table 2: The numerical performance for the case of 03 =0.25

a | N | T | System Estimator BC Estimator
mean s.d. size | mean s.d. size

00| 50 | 6 |-0.01 0.10 0.10| 0.00 0.11 0.06
10| -0.05 0.06 0.28 | 0.00 0.07 0.06
20 | -0.11 0.04 091 0.00 0.04 0.06
100 | 6 | 0.00 0.06 0.08| 0.00 0.07 0.06
10 | -0.02 0.05 0.12 | 0.00 0.05 0.06
20| -0.06 0.03 0.75| 0.00 0.03 0.05
03] 50 | 6] 02 011 0.09| 0.30 0.13 0.07
10| 0.22 0.08 0.37 | 0.30 0.08 0.07
201 0.13 0.05 0.99| 0.30 0.05 0.07
100 6 | 0.30 0.07 0.08 | 0.30 0.09 0.06
10| 0.27 0.05 0.14| 0.30 0.05 0.05
20| 0.21 0.04 0.89| 0.30 0.03 0.05
0550 | 6| 048 0.11 0.09| 0.49 0.14 0.07
10| 0.40 0.08 0.40 [ 0.50 0.08 0.06
20| 0.28 0.05 1.00| 0.50 0.05 0.06
100 | 6 | 0.50 0.08 0.08 | 0.50 0.09 0.06
10| 046 0.05 0.17| 0.50 0.06 0.05
20| 0.38 0.04 0.95| 0.50 0.03 0.05
081( 50 | 6| 07 012 011 0.79 0.17 0.07
10| 0.68 0.09 0.41 | 0.80 0.10 0.07
20| 0.55 0.06 1.00| 0.80 0.06 0.05
100 6 | 0.78 0.09 0.11| 0.79 0.12 0.06
10| 0.75 0.06 0.17| 0.80 0.06 0.06
20| 0.64 0.05 098 | 0.80 0.04 0.05
09150 | 6| 088 0.11 0.09] 0.89 0.21 0.05
10| 0.83 0.08 0.23| 0.90 0.13 0.07
20| 0.74 0.06 0.97| 090 0.07 0.07
100 6 | 0.89 0.09 0.10| 0.89 0.15 0.06
10| 0.86 0.06 0.12| 0.90 0.08 0.05
20 0.79 0.05 0.90| 0.90 0.04 0.06

Note: The experiment design is the same as that described in Table 1 except that the individual

effects ; are generated from .7.d.N(0,0.25).
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Table 3: The numerical performance for the case of 03 =4

a | N | T | System Estimator BC Estimator
mean s.d. size | mean s.d. size |s.d.?

0.0 50 | 6| 0.02 011 0.13| 0.00 0.13 0.06 | 0.13
10| -0.01 0.07 0.22 | 0.00 0.08 0.05| 0.08
20 | -0.08 0.04 0.70 | 0.00 0.05 0.06 | 0.05
100 6 | 0.01 0.07 0.09 | 0.00 0.09 0.06| 0.09
10| 0.00 0.05 0.12 | 0.00 0.06 0.05] 0.06
201 -0.04 0.03 0.49 | 0.00 0.03 0.05] 0.04
03] 50 6] 03 013 0.15] 0.30 0.17 0.07| 0.17
10| 0.30 0.09 0.22 | 0.30 0.10 0.05 | 0.10
201 0.21 0.05 0.66 | 0.30 0.06 0.06| 0.06
100 6 | 0.33 0.09 0.11| 0.29 0.12 0.06 | 0.12
10| 031 0.06 0.16 | 0.30 0.07 0.04 | 0.07
201 0.26 0.04 0.45] 0.30 0.04 0.04 ] 0.04
05] 50 | 6] 059 014 0.23| 0.50 0.21 0.08 | 0.22
10| 054 0.09 0.28 | 0.50 0.12 0.06 | 0.12
20| 0.44 0.06 0.50] 0.50 0.07 0.07| 0.07
100 6 | 0.56 0.10 0.19| 0.50 0.15 0.08 | 0.15
10| 0.53 0.07 0.23 | 0.50 0.08 0.05] 0.08
201 048 0.05 0.35] 0.50 0.05 0.04 | 0.05
081 50 | 6| 092 0.09 055 0.86 0.29 0.14 | 0.39
10| 0.90 0.06 0.71 | 0.80 0.20 0.10 ] 0.21
200 085 0.04 0.61| 079 0.11 0.10] 0.11
100 6 | 091 0.08 0.51| 0.82 0.25 0.13] 0.29
10 0.89 0.05 0.68| 0.79 0.13 0.08 | 0.14
201 0.86 0.04 0.75| 0.80 0.07 0.06 | 0.07
09150 | 6] 098 0.05 065 097 0.26 0.20 | 0.54
10| 098 0.02 0.88 | 0.93 0.24 0.17] 0.32
200 096 0.02 096 089 0.16 0.14| 0.17
100 6 | 098 0.05 0.64| 095 0.24 0.19 | 0.45
10 097 0.02 0.86| 091 0.18 0.15| 0.22
200 097 0.02 098] 090 0.10 0.15] 0.10

Note: The column “s.d.4” reports the standard deviation of the bias-corrected estimator using
instruments (17) instead of (28). The experiment design is the same as that described in Table

1 except that the individual effects v; are generated from i.7.d.N(0, 4).
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5.2 A Process with an Exogenous Variable
The Monte Carlo Design

In this subsection, we employ a DGP that includes an exogenous variable and is specified

as follows
Yit = Qi1 + Bwi + 7 + €it
Wig = PW;—1 + TV + Vi,

where p is a scalar with |p| < 1 and v; is independently distributed across i and ¢.
Including 77; in the DGP of w;;, we allow a correlation between the exogenous variable

w;; and the individual effect «;. We find that there are moment conditions

where
[ Ui W;2 B
: 0
Yi T2 Wi T—1
Zi = Ayig A’wi?, 0 AZ’UJB
0 A3 Aw;y
8 Ay Aw; APy p 4 A?w; 1

We compute the bias-corrected estimator based on formulation (19) using the above
instruments instead of (28). Similarly, we augment the instruments (12) with w;; when
we compute the system estimator. It should be noted that moment conditions (30) are
weaker than the assumption of strict exogeneity of w;;.

Weset =1, p=0.5,7=0.1 and vy ~ i.i.d.N(0,1). We set «, v;, €;1, N and T to

be the same as in Section 5.1.

The Monte Carlo Results

Table 4 shows the experimental result when O’,% = 1. Comparing Table 4 with Table 1,
we can see that when there is an exogenous variable, the size distortion of the system
estimator of o becomes worse in some cases. In contrast, the bias and the size distortion of

the bias-corrected estimator are sufficiently small when an exogenous variable is included
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in the DGP. The standard deviations of both the system estimator and the bias-corrected
estimator get smaller than in the case where there is no exogenous variable. For 3, the
bias-corrected estimator has almost no bias and size distortion, while the system estimator
suffers from size distortion.

As in the case where the DGP does not include an exogenous variable, the bias and
the size distortion of the system estimator increase with 7'. In contrast, the bias-corrected
estimator performs well regardless of 7'

Tables 5 and 6 show the experimental results when 03 = 0.25 and 4, respectively.

Tables 4, 5 and 6 indicate that the numerical performance of the system estimator heavily

2:

depends on o2 2

5~ In particular, when o 4, the system estimator of o has substantial
upward bias and large size distortion. In contrast, the bias and size distortion of the

bias-corrected estimator is moderate even when 03 = 4.
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Table 7: Estimation results

N |T System Estimator BC Estimator
« g sel(a) se(f)]| « B se(a) s.e(H)
385 | 14| 101 -041 005 009 [0.78 -0.11 0.03  0.05

6 EMPIRICAL ILLUSTRATION

In this section, we provide an empirical illustration to demonstrate the application of the
bias-corrected estimator. We consider a simple model for employment dynamics which

was already used by Hayakawa (2006b) and is given by
Nig = ang gy + Bwi + v + €,

where n;; is the log of employment in firm 7 at time ¢ and w;; is the log of wages.

We use a dataset that is taken from Arellano (2002). This dataset is a balanced panel
of 385 Spanish firms consisting of annual data for the period 1983-1996 with T = 14.
Following Arellano (2002), prior to the estimation, we remove time effects by using the
deviations from period-specific cross-sectional means.

The estimation results are presented in Table 7, where “s.e.” indicates the standard
error of each estimator. The standard error of the system estimator is calculated using
Windmeijer’s (2005) method. The standard error of the bias-corrected estimator is given
by (20). The results indicate that the system estimator is unstable in the sense that
the estimate of « exceeds unity, while the bias-corrected estimator gives a much smaller
estimate. This result is consistent with our Monte Carlo experiments which showed that
the system estimator was biased upward. Thus, the system estimator does not appear
to perform well. In terms of standard error, there is no large difference between these

estimators.

7 CONCLUDING REMARKS

In this paper, we proposed a bias-corrected estimator for the autoregressive parameter in
dynamic panel data models. We constructed the bias-corrected estimator by applying a

bias correction based on Kurozumi and Yamamoto (2000) to the GMM estimator which
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is a modified version of Blundell and Bond’s (1998) system estimator. The bias of our
estimator is smaller than that of several commonly used GMM estimators. In order
to reduce the size distortion of the Wald test, we introduced a small sample corrected
estimator of the variance. Further, we proposed an additional instrument to achieve a
gain in efficiency.

The Monte Carlo experiments indicated that the bias-corrected estimator outperforms
the system estimator with Windmeijer’s (2005) correction in terms of small sample bias
and size distortion. It turned out that the additional instrument helps to improve the
efficiency of the bias-corrected estimator. The bias-corrected estimator gains an advan-
tage over the system estimator as N becomes small and/or 03 /o? departs from unity.
Further, we find that the bias and the size distortion of the system estimator become
large as T' becomes large, while those of the bias-corrected estimator become small as
T becomes large. The empirical illustration yielded results corroborating that while the
system estimator is severely biased, the bias-corrected estimator has only moderate bias.

Another advantage of the bias-corrected estimator and the small sample corrected
estimator of the variance is that they do not require any preliminary estimates. The
bias-corrected estimator is simply the linear combination of the GMM estimator for
different sample periods and therefore can be easily calculated. In sum, the bias-corrected
estimator has two attractive features: It outperforms the system estimator in terms of

bias and size distortion in finite samples and is easy to calculate.
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Appendix Proof of Propositions

Proof of Proposition 2

To prove Proposition 2, we provide the following lemma:

Lemma: The sample analogue of the moment conditions (18) converges in probability to
zero as N and T grow:

N T-1
1 1A,
Zlu* NT — yl,t 1 lt:|
( / ) Z |:Ayitui,t+1

* */ aY
where u* = (uj’,--- ,uy)".
Proof: Because the expectation of the random variables y; ;1 Au; and y; ;1 Auy is zero,

the ergodic theorem ensures that plim (Z'u*/NT) = 0.

Using the above lemma, we obtain

1'*,ZAZIy*

M LAZ x*

A VAT

VA VAL

(x¥Z/NT)A(Z'u*/NT)

(x¥Z/NT)A(Z'x*/NT)

2y a+0. (31)

o=

= o+

Proof of Proposition 3
Our proof that the asymptotic variance of (16) satisfies (14) is similar to Lemma 2 of

Yamamoto and Kunitomo (1984). First, we express & — a as

Ao ¥ Pu*/NT
B x*L’UPu*/NT
w1+ (@/w—1)} ) )
= P N0 - )y e @)

Assumption 2 and Schwarz’s inequality ensure that the expectation of the second term
of (32) is bounded above by the term O(57). We therefore consider only the first term
of (32):

1 W —w

(" Pu*/NT){—(1 —

)} = %(l"*'PU*/NT) — %(x*'Pu*d)/NT).

w
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We rewrite z*' Pu* as follows:

*IZ Zl *
T Z ararZ,/NT) 122

Zzz

Zal b b\ [ FeF
(e 2 (2 8) ().

VNT

¥ Pu* =

where a; = ZZ ) Zt 5 AyutyZ i1, Gy = Zl]\il ZtT:_Ql Yit+1AYit, by, - -+, by are the elements
of

(Zz L Zitj :IZ/NT) y €1 = Zz IZt o Yir-1Aui; 1 and ¢z = Zz IZt 2 Ayztuthrl

Using Assumption 2 and Schwarz’s inequality, we obtain

E|1‘*,P’LL*| = E |(a1b101 —+ CLngCl + aleCQ + a2b402)/NT|

<\/E aic)E(b?) + \/E (a2c?)E(b2) + \/E (alc2)E(b2) + \/E (a2c2)E >/NT
< VO((NT)?)/NT.

Similarly we obtain E|z*Pu*®| < O(1). This complete the proof of this proposition.

Proof of Proposition 4

Following the proof of Theorem 1 (ii) in Kurozumi and Yamamoto (2000), we first show
that the limiting distribution of the bias-corrected estimator (13) is normal. Note that
the bias corrected estimator (13) can be expressed as

dBC . ]I*,ZAZI * ]_(.'L'I Z[A] Iyl l‘?IIZ[[A]]Z}Iy;I
]I*,ZAZI 2 .'L'}(IZ[A] IyI l‘?IIZ[[A]]Z}Iy;I '

Thus, we obtain

MZAZ'w* N2 [NT (a¥ZiArZws a Zip A Zh
/NT(&BC — o) = ov/NTZ Ve I Uy 1 )
(Oé Oé) e ZAZ 2 2 <x?’Z1A1Z}x’; + JTFIIZ]]A[[Z}I.T;I

We can express the above equation as follows:

:[ﬂ(%x*'ZAZ'QT*)fl — (i ZiAi Zyay) T =B (et D An Zywy) ]

T 2 2
L1 /Lt ZAZ
x |10 - . (33)
01 ﬁx*IZAZ}IU;I
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and

2 oM Z AT
VAT ” i{&}f\/z\f(o, {q T]) (34)
< ZAZ 37

we obtain

VNT (&P — a) N 72(](& +&11)

~ N0, " +q%r). (35)

Note that the remaining individual effect in u* causes the correlation between u} and uj;,
resulting in 7.

Next, we construct a consistent estimator of the variance of (35) in roughly the same
way as corollary 1 in Kurozumi and Yamamoto (2000). Using (34), we can express the
variance of the limiting distribution of (33), except for the first matrix, as follows:

ol [T 6| 0 —osr

01 0 ¢ r r 0
We estimate parameter matrix () as follows. Because the (1,1) element of ) is associated
with the whole period, it will be estimated from the sample of the whole period. Similarly,
the (2,2) and the (3,3) element will be estimated from the samples of the first period and
the second period, respectively. Because the (1,2) element of @ is associated with the
whole and the first period, it will be estimated from the samples of the whole and the

first period. For the same reason, the (1,3) element will be estimated from the sample

of the whole and the second period. In the same way, we estimate parameter matrix R.
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Thus, the estimator of the variance is given by

= \V2(gpaZAZ's") ! i(— 1 ZiAZy) —?( T2 An 2y 1]
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= 4Var(a) + Var(éq) + —Var(dn) (36)
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{4Var( V2a* ZAA AZ' v
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oV ar(&)a" ZAA, AL Z i Var (ar) — 2@"(d)x*’ZAATAUZ}Ix’;,@(dn)} ,

where A7, Ay, Ar and @"(ds), s = I,II are given in (21), (22), (23) and (24).
However, calculating (36) needs a bit of effort. Thus, we replace the terms between

braces in (36) by
Var(6)2a) 21 Ar A Arr Zysy, (37)

which is asymptotically equivalent to the terms between the braces. There are alternative
estimators other than (37), which are easy to compute and asymptotically equivalent to
the terms between the braces, such as, @"(&)%’}’ZAA,AZ%*. However, in our Monte
Carlo experiments,” the Wald test statistic using these alternative estimators exhibits

large size distortions. Therefore, we recommend to use (37). Consequently, we obtain

"The Monte Carlo results are available from authors upon request.
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the corrected estimator of the variance

Var("%) =4Var(a) + 5 Var(as) + 5 Var (6r)
— War(a)a" ZAAwr A1 Z a iV ar (a;)
— War(&)a" ZAAwrr A Z) 2t Var(érr)
+ Var(a)’ s Z1 A A A 20,

We can see that @(dBC) 2y ¢~ + ¢ 2r. This completes the proof of this proposition.
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