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Abstract

We propose an efficient moment estimator for the probit model
with a continuous endogenous regressor. The estimation can be read-
ily implemented using a standard statistical package that can estimate
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1 Introduction

Consider the following probit model with a continuous endogenous regressor.

y∗1 = αy2 + z1β + u

y1 = 1 if y∗1 > 0

y1 = 0 if y∗1 ≤ 0

y2 = zγ + v

E(v|z) = 0

V ar(v|z) = σ2
v

u = ρv + e

e|z ∼ N(0, 1)

where z1 is a (1 × k) vector of exogenous explanatory variables, y2 is a

continuous explanatory variable and z is a (1 × l) vector of instrumental

variables that includes z1 as a subset. The system of equations is assumed

to be just or over-identified (i.e., k + 1 ≤ l and the part of γ that corre-

sponds to the excluded variables includes at least a non-zero element). The

probit model with a continuous endogenous regressor is typically estimated

by the maximum likelihood method under the assumption of multivariate

normality of u and v. However, researchers often feel that this assumption

is restrictive and attempt to estimate the above model that does not impose

multivariate normality of u and v. Rivers and Vuong (1988) proposed a

two-step maximum likelihood estimation that estimates γ by ordinary least

squares (OLS) in the first stage and introduces y2 − zγ̂ as an additional re-

gressor in the second-stage probit. This approach is widely used by applied

researchers due to its simplicity, but the standard errors are not correctly

calculated when ρ 6= 0.1 Although the procedure to correct standard errors
1Because the estimation error associated with γ does not affect the asymptotic distri-

bution of the second-stage probit estimator under the null of ρ = 0, the test of endogeneity
of y2 can be implemented by testing H0 : ρ = 0.
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is well established, it involves rather cumbersome matrix algebra.2

The purpose of this note is to propose a moment estimator for the above

probit model that is efficient in the class of moment estimators. A general-

ized moment method (GMM) estimator of a probit model with continuous

endogenous regressors was originally suggested by Grogger (1990), but Da-

genais (1999) and Lucchetti (2002) have shown the inconsistency of the

proposed GMM estimator. The proposed estimator in this note is a consis-

tent estimator and correct standard errors are obtained without corrections.

It can be readily implemented using a standard statistical package that

can estimate a system of non-linear equations by the instrumental variable

method.

2 Moment conditions and the optimal instruments

By substitutions, the conditional expectation of y1 on y2 and z is given as:

E(y1|y2, z) = Φ(αy2 + z1β + ρ(y2 − zγ)). (1)

From this conditional expectation, the residual function

r1(w; θ) = y1 − Φ(αy2 + z1β + ρ(y2 − zγ)), (2)

where w = [y1 y2 z] and θ = [α, β, ρ, γ], is orthogonal to any function of z

and y2. The conditional expectation of y2 on z is:

E(y2|z) = zγ. (3)

From the above conditional expectation, the second residual function

r2(w; θ) = y2 − zγ (4)

is orthogonal to any function of z.
2This is probably one reason why applied researchers continue to rely on the linear

probability model when regressors include an endogenous regressor.
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For the above residual functions, the following moment condition holds:

E[r1(w; θ0)|z, y2] = E[r2(w; θ0)|z] = 0, (5)

where θ0 is the true parameter value. Then, the natural question is what

combination of z and y2 should be used as instruments.

The optimal instrument matrix (2 × (2 + k + l)) that attains minimum

estimator variance under the moment restriction of Eq. (5) is given as:

Z∗(z, y2) ≡
(

Z∗
1 (z, y2)
Z∗

2 (z)

)
≡ Ω0(z, y2)−1R0(z, y2), (6)

where

Ω0(z, y2) ≡
(

V ar(r1|z, y2) Cov(r1, r2|z)
Cov(r1, r2|z) V ar(r2|z)

)
=
(

E[r2
1|z, y2] 0
0 E[r2

2|z]

)
and

R0(z, y2) ≡
(

E[∇θr1|z, y2]
E[∇θr2|z]

)
.

This setting is slightly different from the usual setting of the optimal instru-

ment. It uses different information set for different equations, contrary to

the standard optimal instrument (Wooldridge (2001): pp. 439–442), but we

can show that the above instrument attains the minimum estimator vari-

ance.3 Using this optimal instrument, we can calculate the efficient moment

estimator θ̂ by solving the following equation:

n∑
i=1

Z∗(z, y2)′r(w; θ̂) = 0, (7)

where r(w; θ̂) ≡ [r1(w; θ̂) r2(w; θ̂)]′. The above moment condition in our

case is

n∑
i=1


φ(.)y2

Φ(.)(1−Φ(.))(y1 − Φ(.))
φ(.)

Φ(.)(1−Φ(.))z1(y1 − Φ(.))
φ(.)

Φ(.)(1−Φ(.))(y2 − zγ)(y1 − Φ(.))
z
σ2

v
(y2 − zγ)

 = 0, (8)

3The proof is in the appendix for refereeing purposes.
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where the arguments of φ(.) and Φ(.) are αy2 + z1β + ρ(y2 − zγ).4

The expression of the optimal instrument includes unknown parameter

values and it should be estimated by the first-stage estimation. The detailed

estimation procedure is explained in the following section.

3 Estimation procedure

The actual procedure for the estimation involves the following steps.

1. Run OLS regression of y2 on z, keep the residual v̂ and calculate

σ̂2
v = (1/n)

∑n
i=1 v̂2

i .

2. Run probit regression of y1 on y2, z1, and v̂ and keep α̂, β̂, ρ̂. Calculate

the predicted value of the linear index as ˆind = α̂y2 + z1β̂ + ρ̂v̂2.

3. Calculate the optimal instruments for the first residual function as

ỹ2 = −[φ( ˆind)/{Φ( ˆind)(1− Φ( ˆind))}]y2 , z̃1 = −[φ( ˆind)/{Φ( ˆind)(1−
Φ( ˆind))}]z1, and ṽ = −[φ( ˆind)/{Φ( ˆind)(1−Φ( ˆind))}]v̂. Calculate the

optimal instrument for the second residual function as z̃ = −z/σ̂2
v .

4. Estimate the system of equations

y1 = Φ(αy2 + z1β + ρ(y2 − zγ)) + r1 (9)

y2 = zγ + r2 (10)

using [ỹ2 z̃1 ṽ z̃] as instruments for a non-linear instrumental variable

(IV) estimation procedure, assuming that r1 and r2 are not correlated.5

The instruments generated do not affect the asymptotic distribution of

estimators, and thus standard errors are correctly calculated. This estimator

is an efficient estimator because the optimal instruments are used for the

estimation. From a practical viewpoint, all the estimation procedures used
4The derivation is in the appendix for refereeing purposes.
5This is the system 2SLS estimation in Limdep.
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above are readily available in statistical packages such as Limdep, Eviews or

TSP. Thus, applied researchers can easily obtain an efficient estimator with

correct standard errors.

4 Example: Smoking during pregnancy and
family income

We consider estimation of the effect of family income on a pregnant mother’s

smoking behavior. The structural model for the latent variable is:

smoke∗ = β0 + β1motheduc + β2white + α log(faminc) + u, (11)

smoke = 1 if smoke∗ > 0 and smoke = 0 if smoke∗ ≤ 0. The vari-

ables smoke takes value one if the mother smokes during her pregnancy,

motheduc is the mother’s years of education, white is the dummy variable

that takes one if the mother is white, log(faminc) is the natural log of fam-

ily income. We are interested in α. However, family income may include

the mother’s income during pregnancy, and log(faminc) and u may show

positive correlation, given that cigarettes are normal goods. To deal with

this possible endogeneity, we instrument log(faminc) by father’s years of

education, fatheduc. The equation for log(faminc) is:

log(faminc) = γ0 + γ1motheduc + γ2white + γ3fatheduc + v. (12)

The above model is estimated by following three methods: (1) probit

estimation assuming that family income is exogenous; (2) two-step probit

estimation according to Rivers and Vuong (1988); and (3) the moment es-

timation proposed in this paper. The data set used for estimations is taken

from Wooldrige (2001), which was originally taken from Mullahy (1997).

The descriptive statistics of the analysis sample are shown in Table 1.

Column 1 of Table 2 reports the results of probit regression, assuming

the exogeneity of log(faminc). This result implies that higher family in-
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come reduces the probability of the mother smoking during her pregnancy;

however, this estimate could be upward biased.

Column 2 reports the first-stage OLS result according to the Rivers and

Vuong (1988) procedure. The coefficient for father’s education is statistically

significant and this implies that father’s education serves as an instrument

for family income. Column 3 reports the result for second-stage probit,

which includes the residual of first-stage OLS as an additional explanatory

variable. The estimated ρ is 0.61, with standard error of 0.37, which is

marginally significant. This positive ρ̂ implies that u and v are positively

correlated and, after considering this correlation, the estimated coefficient

for log(faminc) is −0.76, which is smaller than the coefficient estimated by

probit. The standard errors reported in column 4 of Table 2 are not adjusted

for the two-step estimation.

Columns 4 and 5 show results for the moment estimation of Eqs. (9) and

(10) using [ỹ2 z̃1 ṽ z̃] as instrumental variables. The estimated coefficients

are similar to those obtained using the Rivers and Vuong (1988) procedure,

but all the standard errors are lower, probably due to the efficiency gain.

The estimated ρ is closer to zero and is statistically insignificant. Thus, we

cannot reject the null hypothesis that log(faminc) is exogenous.

All the above estimations were calculated using Limdep 8.0 and can be

similarly implemented using any statistical package that allows non-linear

system 2SLS (IV) estimation.
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A Optimality of the proposed instrument

This appendix is attached for the purpose of refereeing, not for publication.

The proposed optimal instrument in (6) is not standard since different

information sets are used to calculate the conditional expectation for dif-

ferent residual functions. A use of different information sets for different

residual functions is inevitable in the presence of endogenous regressors in

a nonlinear model. This note shows that our proposed instrument archives

the efficiency bound within a class of GMM estimator despite the use of

different information sets for different residual functions.

Let Z1(y2i, z) and Z2(zi) be arbitrary 1×L, where L ≥ (2+l+k), instru-

ment vectors and let Z ′
i be a L× 2 matrix where Z ′

i = (Z1(y2i, zi)′ Z2(zi)′).

Also define the 2×1 residual vector ri as r(y2i, zi; θ) ≡ (r1(y2i, zi; θ) r2(zi; θ)).

Let m(y, z, θ) = Z ′
ir(y2i , zi; θ). Note that the covariance matrix of GMM es-

timator is (G′ΞG)−1G′ΞΛΞG(G′ΞG)−1 where Ξ is the probability limit of

the weighting matrix; G = E[∂m
∂θ ]; Λ = E[mm′]. Let s∗ be (2 + l + k) × 1

matrix where s∗ = Z∗′r and Z∗′ is defined in (6). Let s be (2 + l + k)× 1
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matrix where s = G′ΞZ ′r. If we can show that E[ss∗′] = G′ΞG , then it also

proves that Z∗′ attains the minimum variance with a a class of GMM from

the Lemma 14.1 of Woodridge (2001). By using the definition of s∗ and s,

E[ss∗′] can be calculated as follows:

E[ss∗′] = E[E[G′ΞZ ′rr′Z∗| y2, z]]

= E[G′ΞZ ′E[rr′|y2, z]Z∗]

= G′ΞE[Z ′E[rr′|y2, z]Ω−1Ro]

From the the definition of Ω−1 and Ro, the above equations becomes

= G′ΞE[Z ′
(

E[r2
1|y2, z] 0
0 E[r2

2|y2, z]

)
·
(

E[r2
1|y2, z] 0
0 E[r2

2|z]

)−1(
E[∇θr1|z, y2]

E[∇θr2|z]

)
]

= G′ΞE[Z ′
(

E[∇θr1|z, y2]
E[r2

2|y2, z]E[r2
2|z]−1E[∇θr2|z]

)
]

= G′ΞE[Z ′
(

E[∇θr1|z, y2]
E[r2

2|z]E[r2
2|z]−1E[∇θr2|z]

)
]

= G′ΞG

Thus, E[ss∗′] = G′ΞG. From the Lemma 14.1 of Woodridge (2001), Z∗

archives a minimum variance among instruments defined by Z ′
i = (Z1(y2i, zi)′

Z2(zi)′).

B Derivation of the optimal instrument

This appendix includes the derivation of the optimal instruments for refer-

eeing purposes. This appendix is not for publication.

Ω0(z, y2) ≡

 E[(y1 − Φ(.))2|z, y2] E[(y1 − Φ(.))(y2 − zγ)|z]
E[(y1 − Φ(.))(y2 − zγ)|z] E[(y2 − zγ)2|z]


=
(

Φ(.)(1− Φ(.)) 0
0 σ2

v

)
,
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because E[(y1 − Φ(.))(y2 − zγ)|z] = E[E[(y1 − Φ(.))(y2 − zγ)|z, y2]|z] =

E[E[(y1 − Φ(.))|z, y2](y2 − zγ)|z] = 0.

R0(z, y2) ≡
(

E[∂r1/∂α ∂r1/∂β ∂r1/∂ρ ∂r1/∂γ|z]
E[∂r2/∂α ∂r2/∂β ∂r2/∂ρ ∂r2/∂γ|z]

)
=
(
−φ(.)y2 −φ(.)z1 −φ(.)(y2 − zγ) φ(.)ρz

0 0 0 −z

)
.

Thus, the optimal instrument is:

Z∗(w) = Ω0(z)−1R0(z)

=

(
− φ(.)y2

Φ(.)(1−Φ(.)) − φ(.)z1

Φ(.)(1−Φ(.)) − φ(.)(y2−zγ)
Φ(.)(1−Φ(.))

φ(.)ρz
Φ(.)(1−Φ(.))

0 0 0 −z/σ2
v

)
.

The first, third and fourth columns in the first row are linearly dependent

and we place 0 in the fourth column.
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Table 1: Descriptive statistics 

Variable Mean Standard 

Deviation 

Minimum Maximum 

Smoking during the pregnancy 0.16 - 0 1 

Family income (1988, $1000) 32.22 17.96 0.5 65 

Log (Family income) 3.28 0.72 -0.69 4.17 

Mother’s years of education  13.13 2.42 2 18 

Father’s years of education 13.19 2.74 1 18 

White 0.84 - 0 1 

Note: N=1191. 

Table 2: The effect of family income on mother’s smoking during the pregnancy 

 (1) (2) (3) (4) (5) 

 Probit Rivers-Voung (1988) 

Two Step Estimation 

Efficient Moment Estimation 

Dependent 

Variable 

Smoking Log(family 

income) 

Smoking Log(family 

income) 

Smoking 

Log (family 

income) 

-0.17 

(0.07) 

- -0.76 

(0.37) 

- -0.46 

(0.24) 

Mother’s 

education 

-0.15 

(0.23) 

0.07 

(0.01) 

-0.08 

(0.05) 

0.07 

(0.004) 

-0.08 

(0.03) 

White 0.23 

(0.14) 

0.35 

(0.05) 

0.46 

(0.20) 

0.35 

(0.02) 

0.33 

(0.14) 

Father’s 

education 

- 0.06 

(0.01) 

- 0.06 

(0.003) 

- 

Constant 1.13 

(0.30) 

1.24 

(0.11) 

1.99 

(0.60) 

1.24 

(0.04) 

1.18 

(0.40) 

ρ - - 0.61 

(0.37) 

- 0.34 

(0.25) 

Note: N=1191. 




