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Abstract

This paper presents an autocorrelation test that is applicable to dynamic panel
data models with serially correlated errors. Our residual-based GMM t-test (here-
after: t-test) differs from the m2 and Sargan’s over-identifying restriction(hereafter:
Sargan test) in Arellano and Bond (1991), both of which are based on residuals from
the first-difference equation. It is a significance test which is applied after estimating
a dynamic model by the instrumental variable (IV) method and is directly applicable
to any other consistently estimated residual. Two interesting points are found: the
test depends only on the consistency of the first-step estimation, not on its efficiency;
and the test is applicable to both forms of serial correlation (i.e., AR(1) or MA(1)).
　 Monte Carlo simulations are also performed to study the practical performance
of these three tests, the m2, the Sargan and the t-test for models with first-order
auto-regressive AR(1) and first-order moving-average MA(1) serial correlation. The
m2 and Sargan test statistics appear to accept too often in small samples even when
the autocorrelation coefficient approaches unity in the AR(1) disturbance. Overall,
our residual based t-test has considerably more power than the m2 test or the Sargan
test.

Keywords: Dynamic panel data; Residual based GMM t-test; m2 and Sargan tests
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1 Introduction

The phenomenon of serial correlation, i.e., cases where successive residuals appear to be
correlated with each other, is very often encountered in econometric models. For ex-
ample, adaptive expectations, stock adjustments, and price adjustments frequently call
for estimating a model in which lagged endogenous variables and autocorrelated distur-
bances coexist. However, while a vast number of methods have been proposed to deal
with these problems in time-series data (e.g., Taylor and Wilson, 1964; Wallis, 1967) few
have addressed them in the context of panel data (Ahn and Schmidt, 1997).

The main purpose of this paper is to propose a test of serial correlation in dynamic
panel models that is applicable after estimating a dynamic model from panel data by the
IV method, and to compare this with the m2 and the Sargan test proposed by Arellano
and Bond (1991)(hereafter: AB). While these two tests are the most commonly used
methods to detect serial correlation of the error term in a dynamic model based on panel
data, their application is limited to uncorrelated disturbances under the null and moving-
average errors under the alternative. In other words, they do not consider the case of
autoregressive errors by representing this kind of model as a dynamic regression with
non-linear common factor restrictions and uncorrelated errors (e.g., Sargan, 1980).

However, if there are a priori reasons to expect autoregressive errors in a panel re-
gression model, or if the dynamics of the model have been incorrectly specified, there is
a strong possibility of autocorrelation being present in the residuals. Hence, it is natural
that we may consider a test of uncorrelated errors as a null against an AR(1) error as an
alternative. If the disturbance has an AR(1) structure, the usual instruments of lagged
values of the dependent variables in the differenced equations as used by, for example,
Anderson and Hsiao (1981, 1982) and AB (1991) are no longer valid. Furthermore, an
estimator that uses lags as instruments under the assumption of white noise errors loses
its consistency if in fact the disturbances are autocorrelated.

Thus, AB’s m2 and Sargan tests are no longer applicable because they use inconsis-
tently estimated residuals based on one-step consistent estimation (hereafter GMM1) or
optimal two-step estimation (hereafter: GMM2) which also use invalid instruments. In
order to remedy this problem, the t-test utilizes consistently estimated residuals based
on IV estimation which uses the lags of exogenous variable as instruments for the lagged
dependent variables. The assumption of strict exogeneity of an explanatory variable is
rather strong. However, it is safer to assume this than to restrict the serial correlation
structure of the errors where it is suspected that the error has an autoregressive structure.

The remainder of this paper is organized as follows. The next section presents the
model and the performance of the m2 and the Sargan test where the disturbances follow
an AR(1) process. In Section 3, we propose a t-test for zero first-order serial correlation.
Section 4 shows that the t-test is applicable to both forms of serial correlation (i.e., AR(1)
or MA(1)). Section 5 reports the simulation results using generated data, while Section 6
concludes. The notation is fairly standard and self-explanatory. ’→’ denotes convergence
in probability while ’∼’ or ’⇒’ are used for convergence in distribution. The non-stochastic
limit of a sequence is also denoted by ’→’ when the context makes the usage clear.
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2 Models and Two Autocorrelation Tests by AB (1991)

An IV type estimator that uses lags of dependent variables as instruments under the
assumption of white noise errors becomes inconsistent if in fact the errors are serially
correlated. It is therefore essential to confirm that the errors are not serially correlated.
We may use the m2 test or the Sargan test for models with MA(1) errors where the
lagged values of the dependent variable itself become valid instruments in the differenced
equations corresponding to later periods. For the AR(1) error process, however, we cannot
directly use these tests because they use the residuals from standard GMM estimations
that may not be consistent in this case.

A simple dynamic panel model with strictly exogenous variables is an autoregressive
specification of the form (e.g Hsiao, 1986; Nerlove, 1971a; Baltagi and Li, 1995)

yit = δyi,t−1 + x0itβ + uit, |δ| < 1.
uit = µi + vit µi ∼ NID(0,σ2µ) (1)

with the one-way error component uit where for i = 1, · · · , N and t = 2, · · · , T . To begin
with, we assume that µi and vit have the familiar error component structure in which

E(µi) = E(vit) = E(µivit) = 0 ∀ i, t (2)

and

E(vitvis) = 0 ∀ i, t 6= s (3)

Let us assume that a random sample of N individual time series (yi1, . . . , yiT ) is
available where T is small and N is large. To focus only on the impact of serial correlation
in the error process, we consider the simplest model without exogenous variables for the
time being. 1 Adopting the standard assumptions concerning the error component, i.e., a
white noise error vit, AB (1991) noted the validity of the following m = (T − 1)(T − 2)/2
linear moment restrictions for the dynamic model (1).

E [(∆yit − δ∆yi,t−1)yi,t−j ] = 0 for (j = 2, · · · , t− 1; t = 3, · · · , T ) (4)

where ∆yit = yit−yi,t−1. For convenience, the moment restrictions in (4) can be expressed
more compactly as E(W 0

yi∆vi) = 0 where ∆vi = (∆vi3, · · ·∆viT )0 andWyi is a (T−2)×m
block diagonal matrix given by

Wyi =

⎡⎢⎢⎢⎢⎢⎣
[yi1] 0

[yi1, yi2]
. . .

0 [yi1, · · · , yiT−2]

⎤⎥⎥⎥⎥⎥⎦ (5)

However if the standard assumption of a white noise error in (3) for vit is violated, the
above orthogonality conditions would no longer hold so that the use of the values of y
lagged two periods or more as instruments for ∆yi,t−1 would be impossible.

1The existence of exogenous variables is crucial for our GMM t-test in order to obtain the estimator
of the serial correlation coefficient in the first-step IV estimation.
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Let us consider two alternative cases of the serially correlated disturbances. First, the
case of an AR(1) stationary disturbances in the classical error term vit:

vit = ρvi,t−1 + ²it 0 < ρ < 1 (6)

And second, the case of an invertible MA(1) disturbance:

vit = eit + θei,t−1 0 < θ < 1 (7)

In addition, we make the standard assumption that

E[²i,t−syi,t−j ] = E[ei,t−syi,t−j ] = 0 s < j (8)

In either of these two cases, values of y lagged two periods are no longer valid as instru-
ments for the later periods in the equations in first differences since

E[(∆yit − δ∆yi,t−1)yi,t−j ] 6= 0, j ≥ 2, ∀ i, t (9)

For the AR(1) error, if j = 2

E[(∆yit − δ∆yi,t−1)yi,t−2] = E[∆uityi,t−2]
= E[∆vityi,t−2]
= E [((ρ− 1)vi,t−1 + ²t)yi,t−2]
= E [[(ρ− 1)(ρvi,t−2 + ²t−1) + ²t]yi,t−2]
= E [ρ(ρ− 1)vi,t−2yi,t−2] 6= 0

Hence, the linear moment restriction in vector form is

E
£
W 0
yi∆vi

¤
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(ρ− 1)E[vi1yi1]
ρ2(ρ− 1)E[vi1yi1]
ρ(ρ− 1)E[vi2yi2]

...
ρT−2(ρ− 1)E[vi1yi1]

...
ρ(ρ− 1)E[vi,t−2yi,t−2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6= 0 ∀i (10)

for the AR(1) serial correlation.2 On the other hand, for the MA(1) error

E[(∆yit − δ∆yi,t−1)yi,t−2] = E[∆uityi,t−2]
= E[∆vityi,t−2]
= E [(eit + (θ − 1)ei,t−1 − θei,t−2)yi,t−2]
= −θE [ei,t−2yi,t−2] 6= 0

For j ≥ 3, all the orthogonality conditions remain valid so that the (m× 1) vector of the
moment restirictions is

2If we focus on the inapplicability of the moment restrictions condition in AB, we can assume that
E(yi1vi1) = E(yi2vi2) =, · · · ,= E(yitvit) and omit these terms from equation (10) for convenience.
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E
£
W 0
yi∆vi

¤
=

⎡⎢⎢⎢⎢⎢⎣
(−θ)
(0,−θ)0
(0, 0,−θ)0

...

(0, 0, · · · ,−θ)0

⎤⎥⎥⎥⎥⎥⎦ 6= 0 ∀i (11)

where E [ei,t−jyi,t−j ] in all the elements is omitted. As we expect that the breaks of the
orthogonality conditions will affect the m2 and Sargan tests, it is interesting to show how
these statistics work in the AR(1) error process. The consistency of the GMM estimator
relies upon the fact that E[∆uit∆ui,t−2] = 0. Therefore, a test for the hypothesis that
there is no second-order serial correlation for the disturbances of the first-differenced
equation, based on the average covariances of ∆v̂

0
−2∆v̂∗ takes the form

m2 =
∆v̂

0
−2∆v̂∗
ṽ1/2

∼ N(0, 1) (12)

where ∆v̂−2 is the vector of residuals lagged twice, of order q = N(T − 4), and ∆v̂∗ is a
q × 1 vector of trimmed ∆v̂ to match ∆v̂−2.3 To focus on the effect of the AR(1) serial
correlation on the numerator in (12) under H1 : 0 < ρ < 1, we obtain

E[∆uit∆ui,t−2] = E[(vit − vi,t−1)(vi,t−2 − vi,t−3)]
= 2γ2 − γ1 − γ3
=

σ2²
ρ2 − 1

£
ρ2 − 2ρ+ 1¤ ρ

=
ρ(ρ− 1)
ρ+ 1

σ2² 6= 0 (13)

where γh is an autocovariance function of vit for a fixed i.
4 Equation (13) reveals that

not only the usual standard normal asymptotic in (12) is unavailable but also the power
of the test depends on ρ if the error follows an AR(1) process.

On the other hand, the invalidity of the orthogonality condition will also affect the
power of the Sargan test

S = ∆v̂0Z

Ã
NX
i−1

Z 0i∆v̂i∆v̂
0
iZi

!−1
Z 0∆v̂ ∼ χ2p−k (14)

where the valid instrument matrix Z is chosen appropriately. The impact of the autocor-
related errors on ∆v̂0Z in S is briefly expressed as

E[∆v̂0ityi,t−s]
2 ∼= ρ2(ρ− 1)2, ρ4(ρ− 1)4, ρ6(ρ− 1)6 · · · for s ≥ 2 (15)

Overall, we expect that the power of the two tests decreases as ρ approaches to unity
under the AR(1) alternative.

3If we drop ‘∆’ from all variables in first differences to follow the notation in AB(1991), ṽ =PN
i=1 v̂

0
i,−2v̂i∗v̂

0
i∗v̂i,−2 − 2v̂

0
i,−2 X∗(X

0ZANZ 0X)−1X 0ZAN (
PN

i=1 Z
0
i v̂iv̂

0
i∗v̂i,−2) + v̂

0
i,−2X∗davar(δ̂)X 0

∗v̂i,−2,
where Z,AN are chosen appropriately. This implies that the m2 statistics depends on the efficiency of the
first step estimation through the davar(δ̂).

4The equation will be 0 if the errors in the model in levels are not autocorrelated or follow a random-
walk process.
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Proposition 2.1 The power of the m2 and Sargan tests have their maximum values at
ρ = 0.5 and around ρ = 0.7 respectively, under the AR(1) alternative.5 Consequently,
the probabilities of Type II error increase as ρ approaches unity in these tests, signalling
possible misspecifications.

3 A Residual-based t-test in the AR(1) Case

The poor performance of the two standard tests, the m2 and the Sargan test, in the
presence of AR(1) disturbances provides the motivation for the discussion in this section.
The idea is to consider a standard first-difference GMM estimation for the previously
estimated residual ûit to test whether the coefficient ρ is significantly different from 0.
Because the test is performed for any consistently estimated residuals, it can be easily
extended to models with time-invariant covariates.

Let us assume that the AR(1) dynamic panel model (1) is given with the standard
assumption for the error component, but no information on the classical error term vit
is available at this stage. There are three possible correlation structures between the
xit and the vit error process. The first possibility is that xit is strictly exogenous. The
second is that xit is weakly exogenous or predetermined. The third, finally, is that xit is
endogenously determined. Depending on the type of correlation, we can determine the
suitable instruments that can be used to estimate δ and β consistently. For the sake of
simplicity, however, we will assume that x

0
it is strictly exogenous (possibly autocorrelated)

and is independent of µi and vit.
6

The a priori expectation that autoregressive errors may be present in the regression
model rules out the use of lags of dependent variables as instruments. As an alternative,
we therefore use xi,t−j as instruments corresponding to yi,t−j where we have no confidence
that the disturbances fulfil the i.i.d. requirement. 7 Then, the IV estimators of δ,β are
given by µ

δ̂IV
β̂IV

¶
= ([x−1, x]0[y−1, x])−1([x−1, x]0y) (16)

where x is the stacked N(T − 2)× (k − 1) matrix of observations on xit, and x−1 or y−1
are vectors of the one-period lagged values of their counterparts x and y, respectively. In
order to keep the notation simple we set δ̂ = (δ̂IV , β̂IV )

0 and Xit = (yi,t−1, xit) so that the
consistently estimated residual

ûit = yit −Xitδ̂ = uit −Xit(δ̂ − δ) (17)

Because the residual ûit includes the individual specific effects µi, i.e. dµi + vit, we are
not able to test directly for serial correlation using a significance test for ρ based on the

5It is not essential to find the exact value of ρ that give the maxima of the two tests. The essential
point is that the two tests are biased and inconsistent under H1.

6If there is a correlation between xit and the unobserved individual specific effects µi, the Hausman
and Taylor (1981) estimation procedure should be adopted. The only concern is whether the estimation
is consistently estimated.

7The lagged exogenous variables are weak instruments if the true disturbances are not serially corre-
lated.
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simple least square regression 8

ûit = ρûi,t−1 + ²t (18)

As an alternative, we suggest using the usual t-statistic of the first-order serial correlation
coefficient of the previously estimated residuals which is obtained after the standard
GMM1 estimation. The first differenced disturbances in levels are

∆uit = uit − ui,t−1 = vit − vi,t−1 = ∆vit

It does not matter whether the unobserved disturbance vit follows an AR(1) or MA(1)
process. This is a very simple but powerful relationship between uit and vit in first
differences that is useful for deriving our t-test. In the case of an AR(1) disturbance as
in (6), the first-differenced equation is

∆vit = ρ∆vi,t−1 +∆²it (19)

where ²it is independent and homoskedastic both across individuals and over time. If we
replace the∆vit in the above equation with the first differenced∆uit, equation (19) exactly
matches the AR(1) dynamic random effects specification in AB (1991). 9 Consequently,
we wish to test H0 : ρ = 0 after obtaining the GMM estimator ρ̂ and its t-value, tρ̂. The
significance test for ρ in (19) is, therefore, an autocorrelation test for the classical error
term in (1).

To operationalize this estimation, ∆uit is replaced with the estimated differenced
residual ∆ûit which is obtained from the first step IV estimation in (16). If we use
∆ûit = ∆uit −∆Xit(δ̂ − δ), we obtain

∆ûit = ρ∆ûi,t−1 +∆²it − (∆Xit − ρ∆Xi,t−1)(δ̂ − δ)
= ρ∆ûi,t−1 +∆ηit say (20)

For T ≥ 3, the newly derived AR(1) dynamic model (20) also implies the following linear
moment restrictions

E[(∆ûit − ρ∆ûi,t−1)ûi,t−j ] = 0 (j = 2, · · · , (t− 1); t = 3, · · · , T ) (21)

The moment equations is conveniently written in vector form as E[W 0
ui∆ηi] = 0 where ηi =

(ηi3 · · · ηiT )0 and Wui is a block diagonal matrix whose sth block is given by (ûi1 · · · ûis).
The GMM estimator ρ̂ is based on the sample moments N−1

PN
i=1W

0
i∆ηi and is given

by

ρ̂ = argminρ(∆η
0
Wu)VN (W

0
u∆η) (22)

where ∆η = (∆η01, · · · ,∆η0N ) and Wu = (W
0
u1, · · · ,W

0
uN ). The one-step GMM estimator

ρ̂ is obtained by setting VN = (N−1
PN
i=1W

0
uiGWui)

−1 where G is a (T − 2) square
8The significance test of ρ, H0 : ρ = −1/(T − 1) is possible in a fixed effect dynamic panel model,

although the test depends on T . (e.g., Wooldledge, 2002; Bhargava et al., 1982).
9The individual effects that may exist in the estimated residuals in the level equation are successively

eliminated by first-differencing.
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matrix which has twos in the main diagonal, minus ones in the first sub-diagonals and
zeros otherwise.10 For consistency, however, we need to confirm the convergence of the
sample moments to the population moments.

Lemma 3.1 The difference between the average sample and population moments con-
verges in probability to zero.

lim
N→∞

1

NT

NX
i=1

TX
t=1

[(∆ûit − ρ∆ûi,t−1)ûi,t−j ]− E[(∆ûit − ρ∆ûi,t−1)ûi,t−j ] −→ 0 (23)

For j = 2, for example, the average sample moment

lim
N→∞

1

NT

NX
i=1

TX
t=1

h
∆²it − (∆Xit − ρ∆Xi,t−1)(δ̂ − δ)

i0 h
ui,t−2 −Xi,t−2(δ̂ − δ)

i
= lim

N→∞
1

NT

NX
i=1

TX
t=1

£
∆²0itui,t−2

¤
+ lim
N→∞

1

NT

NX
i=1

TX
t=1

h
∆²0itXi,t−2(δ̂ − δ)

i
+ lim

N→∞
1

NT

NX
i=1

TX
t=1

h
(δ̂ − δ)0(∆Xit − ρ∆Xi,t−1)0ui,t−2

i
+ lim

N→∞
1

NT

NX
i=1

TX
t=1

h
(δ̂ − δ)0(∆Xit − ρ∆Xi,t−1)0Xi,t−2(δ̂ − δ)

i
Since E[²

0
i,t−sui,t−j ] = 0 for s < j, the first part converges to 0. The remaining three parts

also vanish respectively, as
√
N(δ̂ − δ) = Op(1). For j > 2, the same convergence holds.

We also make an assumption about the convergence of the weighting matrix VN .

Assumption 1 There exists a non-random sequence of positive definite matrices V̄N such
that

VN − V̄N −→ 0 (24)

With this assumption, the one-step GMM estimator ρ̂

ρ̂ = ([∆û−1]0WuV̂
−1
N W 0

u[∆û−1])
−1([∆û−1]0WuV̂

−1
N W 0

u∆û) (25)

is consistent where û−1 is an N(T − 2)× 1 vector of ûi,t−1.
Lemma 3.2 A consistent estimate of the asymptotic variance is given by

Avar ρ̂ = σ̂2η

³
[∆û−1]0WuV̂

−1
N W 0

u[∆û−1]
´−1

(26)

where

σ̂2η =

NX
i=1

TX
t=3

∆η̂2it/2N(T − 2) (27)

10limN→∞ 1
N

PN
i=1 [∆ηi∆η

0
i] −→ G ∀i .

8



Proposition 3.1 Under the null of H0 : ρ = 0,

tρ̂ = σ̂η([∆û−1]0WuV̂
−1
N W 0

u[∆û−1])
− 1
2 ([∆û−1]0WuV̂

−1
N W 0

u∆û) ∼ N(0, 1) (28)

A proof of asymptotic normality is quite straightforward and therefore is not presented.
However, an interesting point worth mentioning is that unlike in the ṽ in them2 statistics,
the term ‘davar(δ̂− δ)’ does not appear in the above asymptotic convergency so that the t-
test does not rely on the efficiency of the first-step estimator, i.e., δ̂. The ‘davar(δ̂−δ)’ which
possibly appears in the estimation of ση in (28) vanishes as N →∞, since

√
N(δ̂ − δ) =

Op(1).

4 The MA(1) Case

In the previous section, we derived the t-test based on residuals from the IV estimation.
In this section, we show that the t-test is valid even if the classical error term in the true
disturbances follows MA(1), i.e., vit = eit+ θei,t−1. Conventionally, we use the m2 test or
the Sargan test to detect any serial correlation in the error term. However, it is possible
to consider converting MA(1) error into its AR(1) counterpart to apply our t-test.

∆vit = ∆eit + θ∆ei,t−1
= θ∆vi,t−1 − θ2∆vi,t−2, · · · ,+∆eit
= θ∆vi,t−1 +

∞X
j=2

−(−θ)j∆vi,t−j +∆eit (29)

= θ∆vi,t−1 +∆ζit (30)

where ∆ζit =
P∞
j=2−(−θ)j∆vi,t−j + ∆eit. This is very similar to the first-difference

AR(1) specification in (19) 11 and the autocorrelation test in the MA(1) case is again
the significance test of θ. Hence, the t-test is readily applicable after estimating (30) by
GMM1 to test whether θ is significantly different from 0.

Proposition 4.1 The residual-based GMM t-test is applicable to both forms of the serial
correlation (i.e AR(1) or MA(1)). Hence, under the null of H0 : θ = 0, tθ̂ ∼ N(0.1).

Since (29) is of infinite order it is necessary in practice to approximate it by an AR(k)
model in order to obtain any estimates. 12 However, if we are concerned about the
significance of θ in (30), we need not worry about the lag length k. There are three
reasons. Firstly, if θ increases, it is obvious that we should use a longer lag. However, an
increase in θ simultaneously raises the significance of θ which makes it easier to detect
autocorrelation. Secondly, from a hypothetical point of view

H0 : θ = 0, H1 : 0 < θ (31)

H0 : θ = θ2, · · · , θk = 0, H1 : not H0 (32)

11The correlation between vi,t−j and ζit becomes negligible as j grows.
12The extra error made by approximating AR(∞) by an AR(k) decreases as k increases, since |θ| < 1.
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(32) is redundant to test (30). In order to put these ideas into the GMM framework, let
us consider the approximation of the MA(1) process to the AR(2) process. For an AR(2)
dynamic panel model, the matrix of instruments would be

Wui =

⎡⎢⎢⎢⎢⎢⎣
[ûi1, ûi2] 0

[ûi1, ûi2, ûi3]
. . .

0 [ûi1, · · · , ûiT−2]

⎤⎥⎥⎥⎥⎥⎦ (33)

Hence, no additional linear restrictions are needed for the AR(2) model, given those
restrictions which are already exploited from the AR(1) specification. This provides the
third reason why the AR(1) approximation is valid Consequently, to test the significance
of θ, it is possible to use the AR(1) approximation even if the true disturbance follows
an MA(1) process. Furthermore, the AR(1) approximation is more promising than the
AR(k) approximation as long as we are concerned with the significance of θ. Therefore,
an attractive feature of this t-test is that it is applicable to both the AR(1) and the MA(1)
alternatives.

A shortcoming of the test, however, is that it may not be possible to distinguish an
AR(1) from an MA(1) structure if the null hypothesis ρ = 0 is rejected. In this particular
case, we suggest a different testing strategy. First, apply the t-test to examine whether
serial correlation is present. If serial correlation is indeed found to be present, apply either
the m2 or the Sargan test to determine whether the error follows an MA(1) process. If
it does not, we can conclude that the error term has an AR(1) structure. This two-step
test procedure will be able to detect any serial correlation structure of order one in the
error term of a dynamic panel data model.

5 Simulation Study

This section illustrates the performances of the three tests mentioned in a dynamic panel
data model. Monte Carlo experiments are carried out to compare the three different tests,
the m2, the Sargan and the t-test. The data generating process follows Nerlove (1971)
and AB (1991).

yit = δyi,t−1 + βxit + uit

xit = αxi,t−1 + ωit ωit ∼ U(−1/2, 1/2) (34)

For the random effects specification we generate uit = µi + vit where µi ∼ N(0, 1) and
the classical error term vit is generated either by the AR(1) process

vit = ρvi,t−1 + ²it (35)

or by the MA(1) process

vit = ²it + θ²i,t−1 (36)
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Table 1: Size and Power of the Three Tests ( AR(1) error )

δ = 0.3 0.5 0.7 0.9

ρ m2 S t-test m2 S t-test m2 S t-test m2 S t-test

0.0 0.07 0.01 0.06 0.02 0.01 0.05 0.02 0.01 0.06 0.02 0.03 0.04
0.1 0.19 0.05 0.22 0.14 0.05 0.30 0.13 0.05 0.46 0.18 0.03 0.17
0.2 0.31 0.06 0.67 0.28 0.11 0.77 0.28 0.12 0.84 0.25 0.09 0.68
0.3 0.42 0.31 0.95 0.36 0.16 0.95 0.35 0.18 0.93 0.31 0.20 0.84
0.4 0.43 0.31 0.99 0.53 0.36 0.99 0.52 0.36 0.99 0.46 0.39 0.99
0.5 0.52 0.48 1.00 0.59 0.47 1.00 0.58 0.48 1.00 0.61 0.49 1.00
0.6 0.50 0.54 1.00 0.54 0.61 1.00 0.53 0.62 1.00 0.44 0.44 1.00
0.7 0.48 0.65 1.00 0.38 0.60 1.00 0.37 0.60 1.00 0.36 0.32 1.00
0.8 0.39 0.57 1.00 0.34 0.56 1.00 0.35 0.57 1.00 0.21 0.13 1.00
0.9 0.11 0.40 1.00 0.12 0.35 0.99 0.12 0.29 0.99 0.07 0.02 0.98

0.0 0.09 0.00 0.07 0.06 0.00 0.04 0.03 0.00 0.08 0.05 0.02 0.05
0.1 0.19 0.03 0.43 0.19 0.03 0.49 0.20 0.04 0.56 0.21 0.05 0.57
0.2 0.54 0.06 0.95 0.47 0.04 0.96 0.46 0.07 0.97 0.52 0.10 0.98
0.3 0.72 0.14 1.00 0.70 0.08 1.00 0.76 0.09 1.00 0.71 0.14 1.00
0.4 0.87 0.25 1.00 0.83 0.24 1.00 0.85 0.31 1.00 0.83 0.24 1.00
0.5 0.91 0.47 1.00 0.89 0.41 1.00 0.87 0.46 1.00 0.76 0.51 1.00
0.6 0.87 0.56 1.00 0.88 0.61 1.00 0.85 0.58 1.00 0.84 0.49 1.00
0.7 0.80 0.61 1.00 0.77 0.54 1.00 0.75 0.68 1.00 0.50 0.36 1.00
0.8 0.62 0.47 1.00 0.57 0.51 1.00 0.54 0.45 1.00 0.10 0.10 1.00
0.9 0.26 0.20 1.00 0.31 0.21 1.00 0.21 0.22 1.00 0.10 0.03 1.00
Notes.
1. From the top, T = 7 and T = 11 given N = 100, 5000 replications.
2. ‘S’ refers to the Sargan test.

All the innovations are independent over time and homoskedastic, i.e. ²it ∼ i.i.dN(0, 1).
For xi1, we used ωi1 and for yi1 we generate

βxi1
1− δ +

µi
(1− δ) +

vi1√
1− δ2 (37)

The design of this formulation allows correlation between the initial observations yi1
and the individual effects µi.

13 The three testing procedures are repeated five thousand
times for each set of parameter values, δ,β, ρ for the AR(1) process, and δ,β, θ for the
MA(1) process. The parameter δ is set to have values 0.3, 0.5, 0.7, 0.9 while β = 2,α =
0.4 is kept fixed. We choose the error process parameters ρ and θ in such a way that
ρ = 0, 0.1, · · · 1. In the base design, the sample size is N = 100 and T = 7, T = 11. The
level of significance is set equal to 5 % throughout the experiments.

First, the three tests are applied to the AR(1) case. Table 1 shows the size and power
of the three test statistics given an AR(1) error process. The empirical sizes of the m2,

13This formulation is useful when there is no information about the initial observation since it imposes
almost no restriction on the initial observation (Sevestre and Tronogon, 1985)
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Table 2: Size and Power of the Three Tests ( MA(1) error )

δ = 0.3 0.5 0.7 0.9

θ m2 S t-test m2 S t-test m2 S t-test m2 S t-test

0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.1 0.13 0.06 0.26 0.15 0.08 0.29 0.17 0.06 0.35 0.19 0.05 0.39
0.2 0.35 0.11 0.67 0.42 0.16 0.78 0.53 0.14 0.85 0.48 0.05 0.87
0.3 0.73 0.29 0.94 0.83 0.49 0.98 0.88 0.30 0.99 0.76 0.06 0.99
0.4 0.97 0.63 0.99 0.99 0.84 1.00 0.98 0.43 1.00 0.88 0.06 1.00
0.5 1.00 0.91 1.00 1.00 0.99 1.00 0.99 0.52 1.00 0.90 0.07 1.00
0.6 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.59 1.00 0.87 0.06 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.82 0.07 0.99
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 1.00 0.77 0.07 0.99
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 1.00 0.73 0.07 0.99
Notes.
1. T = 7, N = 100, 5000 replications.
2. Sizes are corrected previously.

the Sargan, and the residual-based t-test are presented in first row for ρ = 0. They have
reasonable size properties except that the Sargan test in virtually all of the cases shows
a low frequency of rejection. When T = 11, the empirical size of the m2 test and the
Sargan test deteriorates while the t-test maintains reasonably good size properties . 14

The result also shows that the t-test is superior to the other two tests in terms of power.
Theoretically, the m2 test and the Sargan test have their maximum values around

ρ = 0.5 and ρ = 0.7, respectively. This would make the conventional autocorrelation test
difficult as ρ approaches one due to the increase in the probability of a Type II error.
The biasedness of these two tests implies that the presence of serially correlated errors
precludes the use of the past history of y as valid instruments. Consequently, using the
past history of y as instruments not only makes the GMM1 and GMM2 estimation biased
but also makes these two tests biased.

However, by using the consistently estimated residual from the IV estimation, which
does not use the past history of y as instruments, the t-test become unbiased and consistent
without being related to the value of ρ. In the case of ρ = 0.9, the first difference makes
∆²it close to a white noise process and decreases in power even in the t-test. The size-
corrected powers in the AR(1) case are also calculated and are available from the author
on request. The results remain unchanged.

Next, the same three tests are applied to the MA(1) case where θ = 0, 0.1, · · · 1. In
order to apply the residual-based t-test, the MA(1) error process is approximated by
AR(1). Table 2 reports the power of the three test statistics. Even though there is no
maximum value of power as in the case of the AR(1) alternative, the m2 and Sargan tests
have lower power than the t-test. Furthermore, the Sargan test completely under-rejects
when δ = 0.9 as a result of the weak instruments problem. When we conduct the m2

14The under-size problem of the Sargan test is examined in a recent paper by Bowsher (2002). Our
simulation experiments confirm it.
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Table 3: Size and Power of the Wald Tests ( MA(1) error )

θ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AR1-1 0.059 0.223 0.703 0.971 0.999 1.000 1.000 1.000 1.000 1.000
AR2-2 0.052 0.162 0.583 0.941 0.998 1.000 1.000 1.000 1.000 1.000

AR1-1 0.050 0.140 0.580 0.927 0.994 1.000 1.000 1.000 1.000 1.000
AR2-2 0.050 0.089 0.443 0.869 0.994 1.000 1.000 1.000 1.000 1.000
Notes.
1. T = 7, N = 100, 5000 replications. δ = 0.5, fixed.
2. The lower half of the table reports the size-corrected power.

and Sargan tests, we use the number of estimated residuals T − 4 and T − 2, respectively,
while for the t-test the number is T − 1. The lower power of the m2 and Sargan tests is
closely related to this loss of estimated residiuals.

On the other hand, when we convert the MA(1) error to the AR(k) error, the choice
of lag length seems somewhat problematic. Table 3 reports the size and the power of the
Wald test where the lag lengths are k = 1 and k = 2, respectively. AR1-1 and AR2-2
indicate the autocorrelation coefficients where the MA(1) error is approximated by the
AR(1) and AR(2) process, respectively. 15

As stated in Section 4, taking a longer lag length has no advantages in terms of power.
The Wald test with the AR(1) approximation is clearly superior to the test with the AR(2)
approximation. As long as we are concerned with the significance test of ρ or θ, the AR(1)
approximation shows the best performance.

6 Concluding Remarks

The standard first-differenced GMM estimation has become an important tool in the em-
pirical analysis of dynamic panels. However, autocorrelation tests in a dynamic panel
model have received little attention, especially in random effects specifications. One of
the reasons for this is that when T is fixed and small, the structure of the error component
does not seem to be a matter for the estimation itself as long as we are concerned with
unbiasedness and consistency. However, the smaller the T , the more accurate the speci-
fications of the structure need to be for better inferences. In a recent paper, Harris and
Matyas (2001) showed that the standard first-differenced GMM estimators are severely
biased if the errors are autocorrelated and that the bias is an increasing function of ρ.

Next, the robust estimation of the asymptotic standard error in many statistical pack-
ages seems to minimize the effects of possible misspecification. However, Monte Carlo
studies in a recent paper (Windmeijer, 2004) have shown that estimated asymptotic stan-
dard errors of the efficient two-step GMM estimator can be severely biased downward
in small samples. Hence, ignoring the structure of errors seems quite problematic when
they follows AR(1), which will adversely affect to the estimation of asymptotic standard
errors. For these reasons, the validity of autocorrelation tests in a dynamic panel model
is quite important together with the parameter estimations.

15In the case of k = 2, the two-step GMM estimation is conducted using the instrument matrix of (33).
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In this paper we propose a residual-based GMM t-test that is applicable to dynamic
panel data models with serially correlated errors. Two interesting points are found: the
t-test depends only on the consistency of the first-step estimation, not on its efficiency;
and the test is applicable to both forms of serial correlation (i.e. AR(1) or MA(1)). These
points distinguish the t-test from the m2 and Sargan tests proposed by AB (1991).

To study the practical performance of the three tests, the m2, the Sargan and the t-
test, Monte Carlo simulations were performed. The m2 and Sargan tests work reasonably
well in the case of MA(1) disturbances, but they perform badly in the case of the AR(1)
counterpart. The results also indicate that the t-test shows better performance than these
two tests in terms of size and power even under the MA(1) alternative.

We also noticed that the size of the Sargan test is distorted as T grows. The use of too
many moment conditions causes the Sargan test to be undersized and to have extremely
low power. This result confirms previous work by Bowsher (2002). However, the more T
are available, the better the inferences we obtain in the t-test. Consequently, the t-test
would be an excellent alternative to the standard m2 and Sargan tests in terms of size
and power as well as performance with large T .
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