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1 INTRODUCTION

The problem of cointegration, i.e. situations in time-series regression analysis where

deviations from a long-run relationship follow a stationary process, has attracted much

research interest in recent years. Cointegration techniques aiming to investigate for the

presence of cointegrating vectors and to estimate their values have come to be widely

used by econometricians. However, researchers applying cointegration methods need to

pay attention not only to the cointegration relationship itself but in some cases also to

the deviations from the relationship. That is to say, in some empirical applications of

cointegration methods, the serial independence of the errors needs to be examined. For

example, when examining the unbiasedness hypothesis in foreign exchange markets, the

cointegrating regression might be specified as follows:

st = β0 + β1ft−1 + ut, (1)

where st and ft are the natural logarithms of the spot rate and the forward rate, respec-

tively. For the unbiasedness hypothesis to hold, β0 must be equal to zero and β1 equal to

one. In addition, ut must be serially uncorrelated. The intuition underlying these require-

ments, in the words of Brenner and Kroner (1995, 33) is that ‘if all relevant information

is immediately impounded into asset prices, then on average, the forward rate should

equal the realized spot rate, and there should be no information left in the residuals to

help predict future spot rates’. However, as Zivot (1998) notes, many practitioners fail

to address the question of serial correlation.

In this paper, using the framework of Johansen (1988, 1991), we develop a method of

testing whether deviations from a cointegration relationship are serially independent. The

proposed test statistic is easy to calculate and asymptotically χ2-distributed. In order

to evaluate the test, we provide Monte Carlo comparisons of the proposed test statistic

and the test suggested by Kellard, Newbold, and Rayner (2001) for the size distortions

and the power of the tests. The latter method is performed in two stages. In the first

stage, the residual ut is estimated resorting to the cointegration methodology suggested

by Johansen (1988, 1991). In the second stage, Schwartz’s Bayesian information criterion

(SBIC) is used to fit ARMA (p,q) models to the estimated residuals. If ARMA (0,0) is
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selected by SBIC, then it can then be concluded that ut is white noise. The Monte

Carlo study indicates that in terms of power, the proposed test is superior. An empirical

example using exchange rates illustrates the testing procedure and arrives at a result that

is consistent with the experiment.

The next section introduces the proposed test of serial independence in detail. We

formulate the test, derive the testable condition and the test statistic, and establish the

limiting distribution of the test statistic. Section 3 presents the Monte Carlo results

comparing our test to the method of Kellard, Newbold, and Rayner (2001). Section 4

contains a small empirical application of the test, and Section 5 concludes.

2 TESTING FOR SERIAL INDEPENDENCE

Consider an m-vector process for the cointegrating relationship generated by Johansen’s

vector error correction (VEC) model,

∆xt = µ + αβ ′xt−1 +

p−1∑
j=1

Γj∆xt−j + ΘDt + εt, (2)

where xt is an (m×1) vector of variables integrated of order one, µ is a constant vector, Γi

is an (m×m) matrix, ∆ is the first difference operator and εt is distributed IIN(0, Σεε).

The deterministic terms Dt can contain regressors that we consider non-stochastic such

as a time trend or seasonal dummies. Supposing the system (2) is cointegrated with rank

r and 0 < r < m, α is a full rank (m × r) matrix and β is a full rank (m × r) matrix

consisting of r cointegrating vectors such that ut = β ′xt is stationary.

Our interest is in whether deviations from cointegration relations are serially uncor-

related, i.e. whether ut is serially uncorrelated. Obviously, whether errors from cointe-

gration relationships are serially uncorrelated is independent of the deterministic terms

µ and Dt; in what follows, we therefore drop these terms for convenience. We state

the following proposition, giving the testable condition for the null hypothesis of serial

independence of the deviations:

Proposition 1. Let xt be generated by (2) with cointegration rank 0 < r < m. Then,
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β ′xt is serially uncorrelated if and only if

β ′[α Γ1 · · · Γ2] = [−I 0 · · · 0] (3)

Proof: We solve (2) for β ′xt. Multiplying equation (2) by β ′ we obtain

β ′∆xt = β ′αβ ′xt−1 +

p−1∑
j=1

β ′Γj∆xt−j + β ′εt.

Therefore

(I − (I + β ′α)L)β′xt =

p−1∑
j=1

β ′Γj∆xt−j + β ′εt,

where L is the lag operator.

Thus, we have

β ′xt = (I − (I + β ′α)L)−1[

p−1∑
j=1

β ′ΓjC(L)Lj + β ′]εt (4)

where C(L) is the lag polynomial such that ∆xt = C(L)εt. Because ∆xt is stationary by

assumption, Wold’s decomposition theorem ensures the existence of such C(L). Equation

(4) represents the time series structure of ut = β ′xt itself. Substituting (3) in (4), we

obtain

β ′xt = β ′εt.

This means that if (3) holds, then deviations from cointegration relations are serially

uncorrelated.

Furthermore, equation (4) establishes that the restriction that makes all the coefficients

of εi for i = 1, 2, · · · zero is only (3). �

In what follows, we take (3) as the testable condition of the null of serial independence

of the forecast errors. That is, we consider the following testing problem:

H0 : β ′[α Γ1 · · · Γ2] = [−I 0 · · · 0] versus H1 : not H0. (5)

For notational convenience we denote [α Γ1 · · · Γ2] and [−I 0 · · · 0] as θ and I0, re-

spectively.
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The Wald test is exploited to handle problem (5). Specifically,

W = T{vec(β̂ ′θ̂) − vec(I0)}′(Σ̂)−1{vec(β̂ ′θ̂) − vec(I0)}, (6)

where Σ = β ′Ωβ ⊗ Σ−1
XX , ΣXX = V ar[(β ′xt−1); ∆xt−1; · · · ; ∆xt−p+1)], and vec(·) is the

row-stacking operator. We do not apply the likelihood ratio test and the Lagrange mul-

tiplier test because they have the practical shortcoming that estimating (2) under the

restriction (3) is difficult.

Next, we derive the limiting distribution of (6). Because the testable condition is

described by the coefficient of (2), we use the results of Johansen (1998, 1991) to estab-

lish the limiting distribution. As a result, we can easily show that (6) has a standard

distribution asymptotically.

Proposition 2.

W
d−→χ2

r(r+(p−1)m)

Proof: Johansen’s (1995) Theorem 13.5 states

√
T{vec(θ̂) − vec(θ)} d−→N(0, Ω ⊗ Σ−1

XX).

Hence, we obtain

√
T{vec(β̂ ′θ̂) − vec(β′θ)} =

√
Tvec(β′θ̂) −

√
Tvec(β′θ) +

√
T (vec(β̂ ′θ̂) − vec(β′θ̂))

d−→N(β ′Ωβ ⊗ Σ−1
XX) + 0. (7)

We derive the desired result by using (7). �

3 MONTE CARLO SIMULATION

In this section, we conduct a Monte Carlo simulation to investigate the finite-sample

properties of the test statistic. The numerical performance of (6) is compared with that
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of the alternative method of testing serial independence proposed by Kellard, Newbold,

and Rayner (2001).

In our experiment, the following data generating process is employed:

∆xt =

[
0.75

−0.5

] [
−1.0 0.5

]
xt−1 + Γ1∆xt−1 + εt,

where εt is i.i.d.N(0, I2). To test the null hypothesis of serial independence, we let

Γ1 =

[
0.35 −0.35

0.7 −0.7

]
.

Under the alternative, we let

Γ1 =

[
0.35 −0.35

0.7 −0.7

]
+ δ

[
0 0.05

−0.05 0

]

where δ ∈ {1, 2, 3}. The sample sizes are T = 100, 200, 400, and the nominal size of our

test is 5%.

Because model selection by SBIC used in the method proposed by Kellard, Newbold,

and Rayner (2001) is not a test, the performance of that method and the test proposed

here cannot be compared directly. Therefore, in order to evaluate the performance of the

method used by Kellard, Newbold, and Rayner (2001), we count the number of times

SBIC does not fit ARMA(0,0) to β̂ ′xt, where β̂ ′ is the maximum likelihood estimator,

based on 10,000 replications. Comparing this count with the rejection frequency of the

test is an appropriate way in which the two methods can be compared.

Table 1 shows the results of the experiment. In Table 1, our test is denoted by W and

the method used by Kellard, Newbold, and Rayner (2001) is denoted by SBIC.

Table 1

size

W SBIC

T = 100 6.7 10.6

T = 200 6.4 6.6

T = 400 5.3 4.1
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power(δ = 1) power(δ = 2) power(δ = 3)

W SBIC W SBIC W SBIC

T = 100 16.0 12.9 44.0 20.7 76.9 37.7

T = 200 23.8 9.5 72.2 24.6 97.0 58.8

T = 400 42.5 8.7 96.3 43.9 100.0 90.0

The results of the experiment suggest that the size distortions of our test are moderate.

When T = 400, our test yields an accurate size. The power property of our test contrasts

with the corresponding part of SBIC model selection. Under the alternative, the propor-

tion of correct selections by SBIC, i.e., the proportion of the number of cases when SBIC

does not select ARMA(0,0), is considerably smaller than the empirical power of our test.

For example, when δ = 2 and T = 200, the empirical power of our test is 72.2%, while

that of SBIC model selection is only 24.6%. In addition, while the test’s power tends to

increase with T and δ, the proportion of correct inferences by SBIC actually decreases

with T when δ=1. Seen in this light, our test performs considerably better than SBIC

model selection.

4 AN EMPIRICAL EXAMPLE

In this section, we provide an empirical example to demonstrate the proposed test.

As mentioned in the introduction, the unbiasedness hypothesis with regard to foreign

exchange markets requires the error from the cointegration relationship to be white noise.

Specifically, it is required that ut in equation (1) is serially independent. Equation (1) is

reproduced here for convenience:

st = β0 + β1ft−1 + ut (1)

The analysis consists of two steps. First, we use the proposed test to examine for the

presence of serial correlation in the error term ut. Second, we also examine whether β0

is equal to zero and β1 is equal to one.
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We consider a bivariate VEC model,

∆yt = µ + αβ ′yt−1 +

p−1∑
j=1

Γj∆yt−j + εt, (8)

with yt = [st, ft−1]
′, where st and ft are the natural logarithms of the dollar-yen spot rate

and the one month dollar-yen forward rate, respectively. Monthly data for the dollar-yen

spot rate and the one month forward rate were taken from DataStream. The sample

period for which monthly data are available is 1984:6 and to 2004:6, giving a sample size

of T = 241. β ′yt−1 in (8) represents cointegration relationship (1) with an appropriate

specification of the deterministic term, µ.

Applying the Augmented Dickey-Fuller test to determine the degree of integration of

the variables , it appears from (A) in Table 2 that st and ft have a unit root. Next, we

apply Johansen’s procedure to test the cointegration rank of the system. We use SBIC

to determine p in equation (8) (see (B) in Table 2). (D) shows the results of the test for

cointegration with specification (C). We conclude that the rank of cointegration r is one

because the null hypothesis of no cointegration at the 1% significance level is rejected

while the null of r ≤ 1 is not rejected at the 1% significance level.
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Table 2

(A) Test for unit root of exchange rates

ADF test

spot -1.532

forward -1.374

(B) Estimated lag length of VAR: 4

(C) Estimated equation: ∆xt = αβ+′x+
t−1 +

∑3
j=1 Γj∆xt−j + εt,

where x+
t−1 = [1, x′

t−1]
′, β+ = [ρ0, β

′]′.

(D) Test for the cointegration rank

H0 r = 0 r ≤ 1

trace 25.190a 11.893b

We use the critical values provided by Osterwald-Lenum (1992).
a indicates rejection of the hypothesis at the 1% critical level.
b indicates rejection of the hypothesis at the 5% critical level.

(E) Standardized cointegrating vector β̂ ′

0.008 1.000 -1.002

(st = 0.008 + 1.002ft−1 + ut, ut ∼ I(0))

(F) Test statistic for the null of α′ρ0 = 0: 0.035

(G) Test statistic for the null of β1 = −β2: 0.067

(H) Selected model for ut by SBIC: ARMA(0,0)

(I) Test statistics for β ′θ = I0: 19.045a

Note: a indicates rejection of the hypothesis at the 1% critical level.

(F) and (G) report likelihood ratio test statistics based on Johansen’s (1995) Theorem

11.3 and Theorem 7.2, respectively. These statistics are asymptotically χ2-distributed.

The degrees of freedom depend on m, the dimension of the system, r, the cointegration

rank, and the null hypothesis itself. In this empirical example, the degree of freedom is

one. (F) and (G) show that the stationary combination st = ft−1 + ut holds. The next

test is to check for serial correlation in ut. As shown in (H), SBIC selects ARMA(0,0) for

the estimated residual ut, i.e., ut is found to be uncorrelated. Therefore, the unbiasedness
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hypothesis is accepted. On the other hand, our test rejects the null of independence at the

1% significance level as shown in (I). The result appears to be consistent with our Monte

Carlo experiment. Section 3 indicated that while our test had reasonable empirical power,

SBIC tended to select ARMA(0,0) or failed to detect dependence of ut in the Monte Carlo

experiment. Our test suggests that there remains some information in the residuals

that may help forecast the future spot rate. While the method proposed by Kellard,

Newbold, and Rayner (2001) would have led one to accept the unbiasedness hypothesis,

the proposed test suggests that ut is in fact serially correlated and the unbiasedness

hypothesis should be rejected.

5 CONCLUSION

In this paper, we proposed a method to test the null of serial independence of a de-

viation from a cointegration relation. Whether deviations are serially independent is

an important issue in the study of economics and finance, and the test proposed here

offers various benefits: The test statistic is easy to calculate and is asymptotically χ2-

distributed. Moreover, our test performs well in the mean in that its size distortion is

moderate and it showed reasonably high power in the Monte Carlo experiment. The em-

pirical example examining the unbiasedness hypothesis with regard to foreign exchange

rates yielded results corroborating that our test has high power.
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