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1 Introduction

One of the most important variables in option pricing is the volatility of the underlying asset. While

the well-known Black and Scholes (1973) model assumes that the volatility is constant, few would

dispute the fact that the volatility changes over time. Many time series models are now available

to describe the dynamics of volatility. One of the most widely used is the ARCH (autoregressive

conditional heteroskedasticity) family including ARCH model by Engle (1982), GARCH (generalized

ARCH) model by Bollerslev (1986) and their extensions.

The problem of using these models is that we must specify the model before estimating the volatil-

ity and the estimate of volatility depends on the specification of volatility dynamics. Recently, realized

volatility has attracted the attentions of financial econometricians as an accurate estimator of volatil-

ity. Realized volatility is independent of the specification of volatility dynamics because it is simply

the sum of squared intraday returns.

ARCH type models have already been applied to option pricing by Duan (1995), Bollerslev and

Mikkelsen (1999), Heston and Nandi (2000) and Barone-Adesi et al. (2008). More recently, some

authors have applied realized volatility to option pricing as well as the applications to volatility fore-

casting (Koopman et al. 2005; Andersen et al. 2007) and Value-at-Risk (Giot and Laurent, 2004;

Clements et al., 2008; Watanabe, 2012). Stentoft (2008) examine an option pricing model with real-

ized volatility using inverse Gaussian distribution. Christoffersen et al. (2010) propose generalized

expected realized volatility model to incorporate realized volatility into the Heston-Nandi (2000)

GARCH model and derive closed-form option valuation formulas. Corsi et al. (2011) develop the

HAR model (heterogeneous interval autoregressive) by Corsi (2009) and applies it to option pricing.

This article investigates how different option pricing performance would be if we take account of

some practical issues involved in calculating realized volatility. The high-frequency financial litera-

ture has developed to measure realized volatility associated with microstructure noise-induced bias,

the presence of non-trading hours and separate estimates of the continuous and discontinuous (jump)

components of the volatility process. This raises the question of what calculation method for realized

volatility is reasonably useful in option pricing. As far as we know, there are few that have tackled

this problem. One exception is Bandi et al. (2008), which apply different realized volatilities to the

pricing of S&P 500 index options and compare their option pricing performance. Their method is,

however, different from ours as follows. First, they compare the profits from the straddle trading strat-

egy obtained by substituting the volatility forecasts from a time-series model for realized volatility

into the Black-Scholes option pricing formula. We employ a realized volatility option pricing model

without the Black-Scholes formula. Second, they compare the performance of realized volatilities

with or without taking account of microstructure noise, while our analysis further includes realized

volatilities with or without taking account of non-trading hours and asset price jumps and comparison

with ARCH-type models.

There are several problems in calculating realized volatility. First, realized volatility is influenced

by market microstructure noise induced by various market frictions such as bid-ask spread and non-
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synchronous trading (Campbell et al., 1997). There are some methods available for mitigating the

effect of microstructure noise on realized volatility (Aı̈t-Sahalia et al., 2005; Bandi and Russell, 2006,

2008, 2011; Barndorff-Nielsen et al., 2004b, 2008; Hansen and Lunde, 2006; Jacod et al., 2009; Ku-

nitomo and Sato 2008; Oya 2011; Zhang, 2006; Zhang et al., 2005; Zhou 1996). It is worthwhile

applying these methods and comparing the results. We use several different methods for mitigating

the effect of microstructure noise on realized volatility. We analyze whether using these methods

may improve the performance of option pricing of Nikkei 225 stock index options traded at Osaka

Securities Exchange. Second, the Tokyo stock exchange, where the 225 stocks that constitute the

Nikkei 225 stock index are traded, opens only for 9:00–11:00 and 12:30–15:00. We cannot obtain

high-frequency returns during the period when the market is closed. Adding the squares of overnight

(15:00-9:00) and lunch-time (11:00-12:30) returns may make realized volatility noisy. Following

Hansen and Lunde (2005a), we calculate realized volatility without overnight and lunch-time returns

and multiply a constant such that the sample mean of daily realized volatility is equal to the sample

variance of daily returns. We examine whether this method is effective in option pricing by com-

paring with simply adding the squares of overnight and lunch-time returns. Third, financial markets

sometimes display asset price discontinuities, so-called jumps. Under jump-diffusion processes for

the underlying asset prices, the realized volatility includes variation due to jumps. We also construct

realized volatility removing significant large jumps and investigate its contribution to option pricing

performance.

Many authors have documented that realized volatility follows a long-memory process (Andersen

et al., 2001, 2003). We use the ARFIMA (autoregressive fractionally integrated moving average)

model and HAR model by Corsi (2009) to describe the dynamics of realized volatility. It is also well

known in stock markets that today’s volatility is negatively correlated with yesterday’s return. We also

extend ARFIMA and HAR models to take account of this asymmetry in volatility. For ARCH type

models, we use the simple GARCH model proposed by Bollerslev (1986), the EGARCH (exponential

GARCH) model by Nelson (1991) that may capture the asymmetry in volatility and the FIEGARCH

(fractionally integrated EGARCH) model by Bollerslev and Mikkelsen (1996) that may also allow for

the long-memory property of volatility.

We calculate option prices under the assumption of risk neutrality for the examination of realized

volatility option pricing model, while it would be important to relax this assumption. However, a

direct test for risk premium under some specifications of conditional expectation of the Nikkei 225

returns with realized volatility implies that the data used here may be insensitive to estimated param-

eters of the market price of risk. Thus, we only consider the case where the risk neutral and physical

dynamics of realized volatility are identical. Duan (1995) has developed a more general method for

pricing options in ARCH type models, which does not assume risk neutrality. We also calculate

option prices both by assuming the risk neutrality and by using the Duan (1995) method.

Main results using the Nikkei 225 stock index and its put options prices are: (1) ARFIMAX

model with daily realized volatility performs best, (2) the Hansen and Lunde (2005a) adjustment

without using overnight and lunch-time returns can improve the performance, (3) the performance is
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improved by mitigating the effect of microstructure noise on realized volatility, while if the Hansen

and Lunde (2005a), which also plays a role to remove the bias from the microstructure noise by setting

the sample mean of realized volatility equal to the sample variance of daily returns, is used, the other

methods for taking account of microstructure noise do not necessarily improve the performance, (4)

the option-pricing performance is not necessarily improved by removing significant large jumps from

realized volatility and (5) the Duan (1995) method does not improve the performance compared with

assuming the risk neutrality.

The article proceeds as follows. Section � explains several methods used in this article for cal-

culating realized volatilities. Section � explains ARFIMA(X) and HAR(X) models to describe the

dynamics of realized volatility and ARCH type models used in this article for comparison. Section �

explains how to calculate option prices using the ARFIMA(X) and HAR(X) models with daily real-

ized volatility and ARCH type models with daily returns. Section � explains the data and Section �

compares the performance of option pricing. Section � concludes. The appendix provides a detailed

description of realized volatilities employed in this article.

2 Realized Volatility

We start with a brief review of realized volatility using the following diffusion process.

����� 	 ������ 
 ������ ���� (1)

where � is time, ���� is the log-price, � ��� is a standard Brownian motion, and ���� and ���� are the

drift and the volatility respectively, which may be time-varying but are assumed to be independent

of �� ���. In this article, we call ���� or ����� volatility interchangeably although ���� is usually

called volatility in the finance literature. Then, the volatility for day � is defined as the integral of

����� over the interval ��� �� �� where �� � and � represent the market closing time on day �� � and

� respectively, i.e.,

	
� 	

� �

���

�������� (2)

which is called integrated volatility. The integrated volatility is unobservable, but if we have the

intraday return data
�
�������� ��������� � � � � ���, we can estimate it as the sum of their squares


� 	
��
���

���������� (3)

which is called realized volatility. If the prices do not include any noise, realized volatility 
 � will

provide a consistent estimate of 	
�, i.e.,

plim
���


� 	 	
�� (4)
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There are two problems in calculating realized volatility under these settings. First, although the

realized volatility is an accurate estimator of integrated volatility under the assumption of a continuous

stochastic model, it fails when there is market microstructure noise as seen in real high-frequency

data. The microstructure noise can be induced by various market frictions such as the discreteness

of price changes, bid-ask bounces, and asymmetric information across traders, inter alia.1 A growing

literature attempts to study an integrated volatility estimation from microstructure noise-contaminated

high-frequency data. In this article, we employ some influential integrated volatility estimators robust

to the microstructure noise.

Second, the Tokyo Stock Exchange is open only for 9:00–11:00 (morning session) and 12:30–

15:00 (afternoon session) except for the first and last trading days in every year, when it is open

only for 9:00-11:00. It is impossible to obtain high-frequency returns for 15:00–9:00 (overnight) and

11:00–12:30 (lunch-time). Since realized volatility obtained using high-frequency returns over 4.5-

hour trading period only captures the volatility during the part of the day that the market is open, we

need to extend the realized volatility to a measure of volatility for the full day. If we simply add the

squares of overnight and lunch-time returns, realized volatility may be subject to discretization error.

Hansen and Lunde (2005a) propose to calculate realized volatility only when the market is open,

which is denoted as 

���
� , and multiply a constant � such that the sample mean of realized volatility

is equal to the sample variance of daily returns, i.e.,


� 	 �

���
� � � 	

��
����� �����
��� 


���
�

� (5)

where ��� � � � � � � is the sample of daily returns and  is the sample mean2.

In order to test the effects of taking into consideration the microstructure noise and the non-trading

hours on option pricing, we use as many as 34 daily realized volatilities listed in Table �. Without

microstructure noise, it would be desirable to use intraday returns sampled at the highest frequencies.

Since the highest frequencies available for Nikkei 225 stock index is 1-minute, we first calculate re-

alized volatility using 1-minute returns (� 	 ���). From the second to seventeenth methods in Table

� are expected to correct the bias of the classical realized volatility and mitigate the variance increase

of the estimator induced by the microstructure noise. A more detailed description of the methods is

provided in the appendix. We apply the Hansen and Lunde (2005a) adjustment to the 17 kinds of real-

ized volatilities, which are denoted as 
 �1min���, 
 �5min���, 
 �10min���, 
 �15min���,


 �20min���, 
 �����, �������, ����������, ��������, �������������,

�����������, ������������, ������������, �������������, �����

1The literature on market microstructure provides important insights from early studies including Roll (1984), who
derives a simple estimator of the bid-ask spread based on the negative autocovariance of returns. Harris (1990) examines
the rounding effects emanating from the discreteness of transaction prices. In the recent literature on microstructure noise,
Meddahi (2002) and Hansen and Lunde (2006) examine the variance of microstructure noise as well as the correlation
between the microstructure noise and frictionless equilibrium price. Ubukata and Oya (2009) examine dependence of
microstructure noise.

2See Martens (2002) and Hansen and Lunde (2005b) for the other methods.
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���, ��������, ���������. For comparison, we also calculate 17 kinds of daily re-

alized volatilities constructed by adding the sqaures of overnight and lunch-time returns instead

of the Hansen and Lunde (2005a) adjustment, which are denoted as 
 �1min�	
, 
 �5min�	
,


 �10min�	
, 
 �15min�	
, 
 �20min�	
, 
 ���	
, �����	
, ��������	
, ���

���	
, �����������	
, ���������	
, ����������	
, ��������� �	
, �

����������	
, ������	
, ������	
, �������	
.

3 ARFIMA(X), HAR(X) and ARCH type Model

Many researchers have documented that realized volatility may follow a long-memory process. Let

���� denote the �-th order autocorrelation coefficient of variable � . Then, � follows a short-memory

process if
��

��� ������ � � and a long-memory process if
��

��� ������ 	 �. A stationary ARMA

model is a short-memory process. As � increases, the autocorrelation coefficient ���� of the long-

memory process decays more slowly than that of the short-memory process. More specifically, the

former decays hyperbolically and the latter decays geometrically.

The most widely used for a long-memory process is ARFIMA(�� ��  ) model3

!������ ����� 	 "���#�� #� � NID��� ���� (6)

where � denotes the lag operator and !��� 	 ��!���� � ��!�
 and "��� 	 ��"���� � ��"��

� are

the �-th and  -th order lag polynomials assumed to have all roots outside the unit circle. The order of

integration � is allowed to take non-integer values. If � 	 �, ARFIMA model collapses to stationary

ARMA model and if � 	 �, it becomes non-stationary ARIMA model. If � � � � ���, �� follows

a stationary long-memory process and if ��� � � � �, �� follows a non-stationary long-memory

process. ��� ��� may be written as follows.

��� ��� 	 � 

��
���

���� �� � � � ��� $ 
 ��

$
������ (7)

We assume that #� follows an independent normal distribution with zero mean and variance ��.

By setting � 	 � and  	 �, which are selected by the Schwartz information criterion (SIC), and

�� 	 ���
��� � where � is the unconditional mean of ���
��, we consider the following model.

��� ��� ����
��� �� 	 #� 
 "#���� #� � NID��� ���� (8)

We estimate parameters �, � and " jointly using the approximate maximum likelihood method (Beran,

1995), where it is assumed that ���
�� 	 � �� 	 ����� � � ��. We can estimate �� as the sample

variance of residual.

We also employ HAR model by Corsi (2009) well-known as a simple approximate long-memory

3See Beran (1994) for the details of long-memory and ARFIMA model.
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model of realized volatility. The model consists of three realized volatility components defined over

different time periods as follows.

���
�� 	 %� 
 %� ���
���� 
 %� ���
 �
���� 
 %� ���
 �

���� 
 &�� &� � NID��� ��
��� (9)

where 
 �
��� 	 �

	

�	
��� 
��� and 
 �

��� 	 �
��

���
��� 
��� are the average of the past realized

volatilities corresponding to time horizons of 5 trading days (one week) and 22 trading days (one

month), respectively. We can estimate parameters %�, %�, %�, %� and ��
� by applying simple linear

regression.

It is well-known that there is a negative correlation between today’s return and tomorrow’s volatil-

ity in stock markets. To take into account this phenomenon, we extend the above ARFIMA(0,d,1)

model (8) to the following ARFIMA(0,d,1)-X model

��� ���
�
���
��� �� � ������� � ��'

�
��������

�
	 #� 
 "#���� #� � NID��� ���� (10)

where '�
��� is a dummy variable that takes one if the return on day ��� is negative and zero otherwise.

We estimate parameters �, ��, ��, ��, " and �� using the same method as that for ARFIMA model.

If the estimate of �� has a statistically significant positive value, it is consistent with a well-known

negative correlation between today’s return and tomorrow’s volatility in stock markets. The HAR

model (9) can be naturally extended to HAR-X model taking account of the asymmetry in volatility

as follows.

���
�� 	 %� 
 %� ���
���� 
 %� ���
 �
���� 
 %� ���
 �

���� 
 %
�����
 %	'
�
��������
 &�� (11)

&� � NID��� ��
���

We estimate parameters %�, %�, %�, %�, %
, %	 and ��
� using the same method as that for the HAR model.

The positive value of %	 indicates the negative correlation between today’s return and tomorrow’s

volatility.

Some researchers such as Barndorff-Nielsen et al. (2004a), Barndorff-Nielsen and Shephard

(2001, 2002) and Nagakura and Watanabe (2011) have proposed a UC (unobserved components)

model4. Assuming that the asset price follows a contimuous-time model called square-root stochastic

variance model, they show that the realized volatility calculated using the discretely sampled data

follows an ARMA(�,�) model. Since it is the realized volatility rather than its log that follows an

ARMA(�,�) model and the distribution of the error term is unknown, the future volatility sampled for

option pricing may possibly be negative if we assume that the distribution of error term is normal.

Thus, we do not use this model in this article.

4Nagakura and Watanabe (2011) consider microstructure noise while Barndorff-Nielsen et al. (2004a) and Barndorff-
Nielsen and Shephard (2001, 2002) neglect it.
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We also estimate ARCH type models using daily returns. We define daily return as

� 	 ������� ��������� (12)

where �� is the closing price on day �. We specify daily return as

� 	 E�������� 
 (�� (� 	 ��)�� )� � NID��� ��� (13)

where E�������� is the expectation of � conditional on the information up to day � � � and )�

is assumed to follow an independent standard normal distribution. Then, � �
� is the variance of �

conditional on the information up to day �� �. We will explain how to specify E� ������� later.

For volatility specification, we use three different ARCH type models. First is the GARCH model

proposed by Bollerslev (1986). Specifically, we use the GARCH(�� �) model

��
� 	 * 
 %��

��� 
 +(����� * , �� %� + � �� (14)

where *, % and + are parameters, which are assumed to be non-negative to guarantee that volatility is

always positive. This model can capture the volatility clustering. Volatility is stationary if �%
+� � �,

and the speed for which the shock to volatility decays becomes slower as % 
 + approaches to one.

As has already been mentioned, another well-known phenomenon in stock markets is volatility

asymmetry, which cannot be captured by the above GARCH model. To capture this phenomenon, we

also use the EGARCH model proposed by Nelson (1991). Specifically, we use the EGARCH(�� �)

model

�����
� � 	 * 
 !

�
�����

����� *
�

 ")��� 
 - ��)���� � E �)����� � �!� � �� (15)

While the GARCH model specifies the process of ��
� , the EGARCH model specifies that of its log-

arithm. Thus, it does not require non-negativity constraints for parameters. If " � �, it is consistent

with the volatility asymmetry in stock markets. In this model, volatility is stationary if �!� � �, and

the speed for which the shock to volatility decays becomes slower as ! approaches to one. Since )���

is assumed to follow the standard normal distribution, E �)���� 	
�

�./�

Neither the GARCH nor EGARCH models allow volatility to have long-memory property. Hence,

we also use the FIEGARCH model proposed by Bollerslev and Mikkelsen (1996). Since this model is

an extension of the above EGARCH model to allow the long-memory of volatility, it can also capture

the volatility asymmetry. We use the following FIEGARCH(�� �� �) model.

��� !����� ���
�
�����

� �� *
�
	 ")��� 
 - ��)���� � E �)����� � �!� � �� (16)

Similarly to the EGARCH model, it is consistent with the volatility asymmetry in stock markets if

" � �. As for �, the same argument as that for ARFIMA model holds.

FIGARCH (Baillie et al., 1996) and FIAPGARCH (Tse, 1998) models can also take into account
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the possibility that the volatility follows a long-memory process. These models, however, have some

drawbacks. First, the variance of return will be infinite even though � � � � ��� (Schoffer, 2003).

Second, the parameter constraints to guarantee that the volatility is always positive are complicated

(Conrad and Haag, 2006). Thus, we do not use these models in this article. We estimate parameters

in the GARCH, EGARCH and FIEGARCH models using the maximum likelihood method5.

4 Option Pricing

We first calculate option prices under the assumption of risk neutrality. If the traders are risk neutral,

the expected return may be represented by

E�������� 	 � � �� �

�
��
� � (17)

where � and � are continuously compounded risk-free rate and dividend rate.6

The price of European option will be equal to the discounted present value of the expectation of

option prices on the expiration date. For example, the price of European put option with the exercise

price � and the maturity 0 is given by

1� 	 ������0�E
�
Max�� � ����� � �����

	
� (18)

where ����� is the price of the underlying asset on the expiration date � 
 0 .

We cannot evaluate this expectation analytically if the volatility of the underlying asset follows

ARFIMA(X), HAR(X) or ARCH type models. We calculate option prices by simulating ����� from

5See Taylor (2001) for the estimation method for the FIEGARCH model.
6It would be important to relax the assumption of risk neutrality if the risk is priced in the market. For example, the

option pricing models with realized volatility proposed by Christoffersen et al. (2010) and Corsi et al. (2011) allow for
more flexible specification of the expected return such that

E��������� � � � �� �

�
���� � ����� �

where � denotes the market price of risk and � � � corresponds to risk neutrality. Christoffersen et al. (2010) define �� �

� as
a weighted average of two components by daily return innovation and realized volatility such that �� �

� � �������������
and Corsi et al. (2011) adopt an estimates of integrated volatility as �� �

� . As introduced in Stentoft (2008), this specification
allows us to directly test statistical significance of � using realized volatility, i.e.,

�� � � � �� �

�
��� � ���� �

�
���	��

�� � �� � �� � �
	����
���

� �
�
��� � 	�


We estimate the parameter � by the linear regression procedure with Newey and West (1987) standard errors and different
realized volatilities, while its statistical significance is not obtained. Even in the other specification like � � � � � � �
�

�
��� � �

�
��� �

�
���	�, the parameter � is not significant at the 5% level, although it is significant at the 10% level

in some regressions with different realized volatilities. These results imply that the data used here may be insensitive to
the market price of risk.
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ARFIMA(X), HAR(X) or ARCH type models. Suppose that �����
��� � � � � � �

���
��� � are simulated. Then,

(18) may be calculated as follows.

1� � ������0�
�

2

��
���

Max�� � �
���
��� � ��� (19)

We set 2 	 �����. For variance reduction, we used the control variate and the Empirical Martingale

Simulation proposed by Duan and Simonato (1998) jointly.

Duan (1995) relaxed the assumption of risk neutrality to derive option prices when the price of

underlying asset follows ARCH type models. We also use this method. Following Duan (1995), we

set

E�������� 	 � � �� �

�
��
� 
 3��� (20)

where 3�� captures the risk premium.

Unless the traders are risk neutral, we must convert the physical measure 1 into the risk neu-

tral measure 4 and evaluate the expectation in equation (18) under the risk neutral measure 4.

Duan (1995) makes the following assumptions on 4, called local risk-neutral valuation relationship

(LRNVR).

1. ��	��� follows a normal distribution under the risk neutral measure 4.

2. E���������	���� 	 ����� � ��.

3. Var����	���� 	 Var� ���	���� a.s.

Under assumptions � and �, daily returns under the risk neutral measure 4 must be represented by

� 	 � � �� �

�
��
� 
 5�� 5� 	 ��6�� 6� � NID��� ��� (21)

Comparing equation (21) with equations (13) and (20) leads to

(� 	 5� � 3��� (22)

)� 	 6� � 3� (23)

Since assumption � means that volatilities are the same between 1 and 4, all we have to do for

volatility is to substitute equations (22) or (23) into (� in the GARCH volatility equation or )� in the

EGARCH and FIEGARCH volatility equations. For example, the GARCH(�� �) volatility equation

will be

��
� 	 * 
 %��

��� 
 +�5��� � 3�����
�� * , �� %� + � �� (24)

Equations (21) and (24) constitute GARCH(�� �) model under 4. Hence, we can evaluate the option

prices as follows.

[1 ] Estimate the parameters 3, *, % and + in GARCH(�� �) model under 1 that consists of equa-

tions (13), (20) and (14).
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[2 ] Simulate ����� using GARCH(�� �) model under 4 that consists of equations (21) and (24) by

setting the parameters 3, *, % and + equal to their estimates in [1].

[3 ] Substitute ��
���
��� � � � � � �

���
��� � simulated in [2] into equation (19) to obtain the option price.

Similarly, we can calculate the option price using the EGARCH and FIEGARCH models. The

EGARCH (�� �) and FIEGARCH(�� �� �) volatility equations under 4 will be

�����
� � 	 * 
 !

�
�����

����� *
�

 "�&��� � 3� 
 -



�&��� � 3� �

�
�./

�
� (25)

��� !����� ���
�
�����

� �� *
�
	 "�&��� � 3� 
 -



�&��� � 3� �

�
�./

�
� (26)

For comparison, we also calculate option prices using the Black-Scholes formula with volatility

� as the standard deviation of daily returns over the past 20 days.

5 Data

We analyze the Nikkei 225 stock index options traded at the Osaka Securities Exchange. The un-

derlying asset is the Nikkei 225 stock index, which is the average of the prices of 225 representative

stocks traded at the Tokyo Stock Exchange. The sample period is from May 29, 1996 to September

27, 2007. Following equation (12), we calculate the daily returns for the underlying asset as the log-

difference of the closing prices of the Nikkei 225 index in consecutive days. Table 2 summarizes the

descriptive statistics of the daily returns (%) for the full sample. The mean is not significantly differ-

ent from zero. While the skewness is not significantly different from zero, the kurtosis is significantly

above �, indicating the well-known phenomenon that the distribution of the daily return is leptokurtic.

LB(10) is the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the

null hypothesis of no autocorrelations up to �� lags. According to this statistic, the null hypothesis is

not rejected at the 1% significance level although it is rejected at the 5% level. We do not consider

autocorrelations in the daily return in the following analyses.

We calculate realized volatility using the Nikkei NEEDS-TICK data. This dataset includes the

Nikkei 225 stock index for every minute from 9:01 to 11:00 in the morning session and from 12:31

to 15:00 in the afternoon session. Sometimes, the time stamps for the closing prices in the morning

and afternoon sessions are slightly after 11:00 and 15:00 because the recorded time shows when the

Nikkei 225 stock index is calculated. In such cases, we use all prices up to closing prices. Using these

prices, the 34 daily different realized volatilities listed in Table � are calculated with or without using

the adjustment coefficient � defined by equation (5).

Before the computation of the 34 daily different realized volatilities, we provide the realized

volatility signature plots in Figure 1 to roughly gauge the impact of microstructure frictions contained

in the high-frequency returns of the Nikkei 225 index. The signature plots are generated by the sample

mean of 
 �1min�, 
 �2min�, � � � , 
 �20min� based on equation (3) as a function of the sampling

frequency of the Nikkei 225 intraday returns. 
 	
 (solid line) and 
 �� (dotted line) correspond

10



to the realized volatility with the squares of overnight and lunch-time returns or the Hansen and

Lunde (2005a) adjustment, respectively. If there is no severe microstructure noise, both plots should

be leveled off at the frequencies. However, we can find the large impact of microstructure noise, as

evidenced by a rapid decline in the plot of 
 	
 with short measurement intervals. On the other

hand, 
 �� applying the Hansen and Lunde (2005a) adjustment comparatively stabilizes for all

sampling frequencies, although there is a gradual increase in the range of 1-7 minutes. This result

implies that the Hansen and Lunde (2005a) adjustment, where the mean of realized volatility is equal

to the sample variance of daily returns, may play a role to partially offset the bias caused by the

microstructure noise as well as removing the discretization noise attributed to non-trading hours.

Figure 2 plots some kinds of realized volatilities and Table 3 summarizes the descriptive statis-

tics of the 34 daily different realized volatilities. From 
 �1min��� to ��������� are adjusted

such that the mean of realized volatility is equal to the sample variance of daily returns, but their means

are different because the adjustment coefficient � is calculated day by day using the past 1200 real-

ized volatilities and daily returns. From 
 �1min�	
 to �������	
 are not adjusted and their

means are much lower than those of the others. Among the 17 realized volatilities with the Hansen

and Lunde (2005a) adjustment, 
 �1min��� has the smallest standard deviation. 
 �20min��� has

the largest standard deviation of them as induced by the range from the minimum at ������ to the

maximum at �������. The standard deviation of ��������	
 is the smallest of all. These results

are confirmed by Figure 2. Figure 2(a) shows that 
 �15min��� is more volatile than 
 �1min���

and 
 �����, and Figure 2(b) shows that 
 �1min�	
 is smaller on average and less volatile

than 
 �1min���. The values of skewness and kurtosis indicate that the distributions of all real-

ized volatilities are non-normal. LB(10) is so large that the null hypothesis of no autocorrelation is

rejected. Table 3 (b) shows the descriptive statistics for log-realized volatilities. They are qualita-

tively the same as those of Table 3 (a) except skewness and kurtosis. While realized volatilities are

positively skewed, log-realized volatilities are negatively skewed at the 5% significant level except

���
 �10min����, ���
 �15min����, ���
 �20min����, ���
 �10min�	
�, ���
 �15min�	
�

and ���
 �20min�	
�. The kurtosis of log-realized volatilities is much smaller than those of real-

ized volatilities. The kurtosis of ���
 �1min���� and ���
 �1min�	
� is not significantly above �

at the 5% level. The distributions of log-realized volatilities are much closer to the normal distribution

than those of realized volatilities. Thus, we use log-realized volatility as a dependent variable in the

ARFIMA model (8), HAR model (9), ARFIMAX model (10) and HARX model (11).

To measure the performance of option pricing, we also use prices of the Nikkei 225 stock index

options traded at the Osaka Securities Exchange. Nikkei 225 stock index options are European options

and their maturities are the trading days previous to the second Friday every month. Considering

theoretical option prices with respect to a risk neutral measure, we assess the performance of option

pricing using options which are most likely to be efficiently priced. For the Nikkei 225 stock index

options, put options are traded more heavily than call options. For the maturity, option trading seems

to be more active during the week following an expiration date and the options with the maturity more

than one month are not traded so much. Thus we concentrate on put options whose maturity is 30 days
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(29 days if the day when the maturity is 30 days is a weekend or holiday). On such days, we consider

put options with different exercise prices whose bid and ask prices are both available at the same time

between 14:00 and 15:00. For each option, we use the average of bid and ask prices at the same time

closest to 15:00 as the market price at 15:00. The reason why we use the average of bid and ask prices

instead of transaction prices is that transaction prices are subject to market microstructure noise due

to bid-ask bounce (Campbell et al., 1997). We also exclude some kinds of put options which are not

priced at the theoretical range from the lower bound at 1� 	 Max��� �exp���0�� �� exp���0�� to

the upper bound at 1� 	 �exp���0�.

Following Bakshi et al. (1997), we classify put options into five categories such as DITM (deep-in-

the-money), ITM (in-the-money), ATM (at-the-money), OTM (out-of-the-money) and DOTM (deep-

out-of-the-money) using the moneyness which is the ratio of the underlying asset price over the ex-

ercise price. Table � shows this classification. We examine the performance in each category as well

as in total. Table � describes the put prices calculated as the average of bid and ask prices and the

Black-Scholes implied volatilities for each moneyness. The average put prices range from 21.30 yen

in DOTM to 2859.70 yen in DITM. Options in DOTM and OTM account for 41% and 16% of the

total sample. The implied volatilities form a smile pattern where options in DOTM and DITM are

characterized by higher volatilities more than 30% compared with 22.86% for options in ATM.

We estimate the ARFIMA(X) and HAR(X) models using 1200 daily realized volatilities up to

the day before the options whose maturity is one month are traded, where the adjustment coefficient

� defined by equation (5) is calculated using the same 1200 realized volatilities with 1200 daily re-

turns. We also estimate ARCH type models using the same 1200 daily returns with risk-free rate and

dividend. As mentioned, the daily returns are calculated as the log difference of closing prices. We

use CD rate as a risk-free rate and fix the annual dividend rate as ���� following Nishina and Nabil

(1997). The first date when options whose maturity is one month are traded is April 11, 2001. We

first estimate the parameters in the ARFIMA(X), HAR(X) and ARCH type models using 1200 daily

realized volatilities and returns up to April 10, 2001, where we calculate the adjustment coefficient �

using the same 1200 daily realized volatilities and returns. Then, given the obtained parameter esti-

mates, we calculate the put option prices on April 11, 2001 using CD rate and the Nikkei 225 index

at 15:00 on that date. The next date when options whose maturity is one month are traded is May 9,

2001. We first estimate the parameters in the ARFIMA(X), HAR(X) and ARCH type models using

1200 daily realized volatilities and returns up to May 8, 2001, where we calculate the adjustment

coefficient � using the same 1200 daily realized volatilities and returns. Then, given the obtained

parameter estimates, we calculate the put option prices on May 9, 2001 using CD rate and the Nikkei

225 index at 15:00 on that date. We repeat this procedure up to September 2007.

Figure 3 plots the estimates of all parameters in all models for each of the above 78 iterations.

Figure 3 (a) and (b) plot the estimates of parameters in the ARFIMA and ARFIMAX models using


 �15min���. The estimates of � in the ARFIMA and ARFIMAX models move around 0.5 and

are above 0.5 in the latter half, indicating the long-memory and the possibility of non-stationarity of

log-realized volatility. The estimates of �� in the ARFIMAX model are positive for all periods, indi-
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cating the well-known phenomenon of a negative correlation between today’s return and tomorrow’s

volatility. Figure 3 (c) and (d) plot the estimates of parameters in the HAR and HARX models using


 �15min���. The positive estimates of %�, %� and %� in the HAR and HARX models for all periods

are consistent with the empirical results using S&P500 in Corsi (2009). The estimates of %	 in the

HARX model are positive, indicating the asymmetry in volatility. Figure 3 (e), (f) and (g) plot the

estimates of parameters in ARCH type models using daily returns. The sum of the estimates of % and

+ in the GARCH model and the estimates of ! in the EGARCH model are close to 1 for all periods,

indicating the well-phenomenon of volatility clustering. These models, however, do not allow for the

long-memory of volatility. The estimates of � in the FIEGARCH model are more volatile than those

of the ARFIMA(X) model. They move around 0.2 in the first half while they move up to 0.54 and

down to 0 in the latter half. These results provide evidence that a structural change may occur during

our sample period, but we leave it for future research. The estimates of " in the EGARCH and FIE-

GARCH models are negative for all periods, indicating a negative correlation between today’s return

and tomorrow’s volatility.

6 Results

To measure the performance of option pricing, we use four loss functions, MAE (Mean Absolute

Error), RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) and RMSPE

(Root Mean Square Percentage Error) defined as

MAE 	
�

�

��
���

��� �1� � 1�

��� � RMSE 	

��� �

�

��
���



�1� � 1�

��
�

MAPE 	
�

�

��
���

�����
�1� � 1�

1�

����� � RMSPE 	

��� �

�

��
���

�
�1� � 1�

1�

��

�

where � is the number of put options used for evaluating the performance, �1� is the price of the

7th put option calculated by each model and 1� is its market put price calculated as the average of

bid and ask prices at the same time closest to 15:00. From the fact that the lowest market put price

amounts to 1.5 yen which is calculated as the mid-point of the ask price at 2 yen and the bid price at

1 yen, any price �1� less than the lowest price is approximated at 1.5 yen. MAE and RMSE, which are

the absolute metrics, assign a lot of weight to options with high valuations such as DITM and ITM.

For MAPE and RMSPE as the relative metrics, much more weight may be put on DOTM and OTM

options with valuations close to zero.

Table � shows the values of loss functions for ARCH type models with daily returns, the ARFIMA

(X) and HAR(X) models with 
 �15min��� and the BS model. In total, the ARFIMAX model per-

forms best except for RMSE, while the HARX model performs best for RMSE. In DOTM, ARFIMAX

model performs best for RMSPE and MAPE while the FIEGARCH model performs best for the other
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loss functions. In OTM and ATM, the ARFIMAX model performs best except for RMSE and it per-

forms best for RMSPE and MAPE in ITM. In DITM, the GARCH model performs best for all loss

functions. Although there are some exceptions depending on moneyness and loss function, we may

conclude that the ARFIMAX model performs best.

Tables � and � show the values of loss functions for the ARFIMAX model with 34 different re-

alized volatilities. Table � shows the result for the realized volatilities calculated simply by adding

the squares of overnight and lunch-time returns instead of using the Hansen and Lunde (2005a) ad-

justment. In total and all moneyness, the loss functions of 
 �1min�	
, which does not take ac-

count of microstructure noise at all, have larger values than those of the other realized volatilities

except ��������	
. This result is intuitive because 
 �1min�	
 is seriously affected by the

microstructure noise as shown by the realized volatility signature plot in Figure 1. Thus we con-

clude that the option pricing performance is improved by applying methods to remove microstructure

noise-induced bias in realized volatility.

Table � shows the result for the realized volatilities calculated using the Hansen and Lunde (2005a)

adjustment instead of adding the squares of overnight and lunch-time returns. In total, most loss

functions in Table � are smaller than those in Table � regardless of realized volatilities with or without

taking account of microstructure noise. The improvement could be seen for all loss functions in

DOTM and DITM and for RMSE and MAE in OTM. These results indicate that the Hansen and

Lunde (2005a) adjustment may improve the performance of option pricing. It is also noteworthy

that the performance of 
 �1min��� is no longer bad compared with the other realized volatilities,

although 
 �15min���, 
 �20min��� and ���������� perform best in total. This means

that the Hansen and Lunde (2005a) adjustment plays a role to remove not only the discretization

noise included in the squares of the lunch-time and overnight returns but also partially offset the bias

caused by microstructure noise. This finding is also consistent with the result that the signature plot

of 
 �� in Figure 1 comparatively stabilizes for all sampling frequencies. Judging from the results

in Tables � and �, we conclude that: (1) the Hansen and Lunde (2005a) adjustment for removing the

discretization noise induced by non-trading hours improves the performance, (2) methods for reducing

microstructure noise-induced bias yield better performance, while if the Hansen and Lunde (2005a)

adjustment, which plays an additional role to partially offset the microstructure noise-induced bias, is

used, they are not necessarily needed. 7 8

7We have focused on put options whose maturity is 30 days so far. Following Barone-Adesi et al. (2008), the maturity
of 30 days can be classified as short maturity. We also analyze put options whose maturity is 90 days classified as medium
maturity. The result, which is not reported in this article to save the space, also supports an evidence that the option pricing
performance is improved by taking account of microstructure noise but it does not necessarily improve the performance
when the Hansen and Lunde (2005a) adjustment is employed.

8Bandi et al. (2008) compare the option pricing performance of the realized volatilities of the S&P 500 index. Their
method is, however, different from ours as follows. (1) They compare the profits from the straddle trading strategy ob-
tained by substituting the volatility forecasts from the ARFIMA model for realized volatility into the Black-Scholes option
pricing formula. (2) They only analyze the performance of�� �5min��� to ���������, which are calculated using
the Hansen and Lunde (2005a) adjustment, while we also analyze the performance of �� �1min� �� and �� �1min���

to ���������, which are calculated by adding the lunch-time and overnight returns without using the Hansen and
Lunde (2005a) adjustment. (3) They do not analyze ARCH-type models.
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So far, we assumed risk neutrality. As explained in Section �, Duan (1995) has proposed a method

for GARCH option pricing relaxing this assumption. We also apply this method to the GARCH,

EGARCH and FIEGARCH models. Table � shows the result. The values of loss functions using

this method are not so much different from those assuming risk neutrality. This result means that the

Duan (1995) method does not improve the performance of option pricing compared with assuming

risk neutrality.

Financial markets sometimes display asset price discontinuities, so-called jumps. If jump-diffusion

processes are used instead of equation (1), the realized volatility measures used in this article include

not only integrated volatility but also jump variation. Andersen et al. (2007) conclude that the per-

formance of forecasting future realized volatility could be improved by using the HAR model with

realized volatility separately from significant jumps. In this subsection, the realized volatility without

significant jumps is constructed to assess its contribution to option pricing performance.

We employ the following procedure to remove significant jump variation. Barndorff-Nielsen and

Shephard (2004) propose a consistent estimator of the integrated volatility unaffected by jumps called

the realized bipower variation

�
� 	 ����
�

�� �

��
���

� �������� �� ������������ �� (27)

where �� 	
�

�./. The bipower variation, which is originally defined as the sum of the products of

adjacent absolute returns, is influenced by microstructure noise. To mitigate the noise-induced bias,

we construct the following realized bipower measure based on skip-one returns introduced in Huang

and Tauchen (2005) and Andersen et al. (2007)

�
��� 	 ����
�

�� �

��
���

� �������� �� ������������ � � (28)

We calculate �
��� calculated from 15 minute high-frequency returns for which the bipower variation

signature plots in equation (28) are leveled off. Identification of the significant jumps is based on an

asymptotically normal test statistic using realized volatility and bipower variation

��
� 	

	
��
� � �
����
 ��

��
���
� 
 ����� � ��Max��� �4����
 ��

��� �
� (29)

where

�4��� 	 ����
��
�

�� �

��
��	

� �������� �
��� ������������ �
��� ��������
��� �
��� (30)

�
�� 	 �������.�����.�����

�4��� is called the realized tripower quarticity based on skip-one returns which converges to the
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integrated quarticity of continuous processes. 
� in equation (29) is replaced by 
 �15min� during

the market open. Thus daily realized volatility without significant jumps (
 -8#2�) is constructed

by the realization of ��
� and some critical value ���


�8#2�� 	 	���
� , ��� ��
��� 
 	���

� � ��� �
�� (31)

where 	� � � denotes the indicator function. The proportion of day with significant jumps based on

significance levels �� � +� 	 ������ ����� ������ ����� takes 5.2%, 13.1%, 20.2% and 26.0% for the

full sample, respectively. We estimate the ARFIMAX model and simulating option prices using the


 -8#2� based on +� 	 �����, which is the same setting as Andersen et al. (2007).

Table �� summarizes the values of loss functions for 
 �15min��� and 
 -8#2� with the

Hansen and Lunde (2005a) adjustment. The values of loss functions for 
 -8#2� are not so much

different from those for 
 �15min���. Judging from the result in Table ��, we may conclude that

the option-pricing performance is not necessarily improved by removing significant large jumps from

realized volatility.

7 Conclusions

This article analyzes whether realized volatility is useful for option pricing. Different realized volatil-

ities are calculated with or without taking account of microstructure noise, with or without using

overnight and lunch-time returns and with or without separating significant large jumps from real-

ized volatility. This article compares the performance of option pricing among the ARFIMA(X) and

HAR(X) models with daily realized volatility and the ARCH models with daily returns. Main results

using the Nikkei 225 stock index and its put options prices are: (1) ARFIMAX model with daily real-

ized volatility performs best, (2) the Hansen and Lunde (2005a) adjustment without using overnight

and lunch-time returns can improve the performance, (3) the performance is improved by removing

the bias from microstructure noise, while if the Hansen and Lunde (2005a), which also plays a role to

remove the microstructure noise-induced bias by setting the sample mean of realized volatility equal

to the sample variance of daily returns, is used, the other methods for taking account of microstructure

noise do not necessarily improve the performance, (4) the performance is not necessarily improved

by removing significant large jumps from realized volatility and (5) the Duan (1995) method does not

improve the performance compared with assuming the risk neutrality.

Several extensions are possible. First, Jacod et al. (2009) propose an alternative realized volatility

using preaveraging approach robust to microstructure noise. Andersen et al. (2012) propose two

new jump-robust estimators of integrated volatility called the minimum or median realized volatility.

It is interesting whether the performance of option pricing will also be improved by applying their

estimators. Second, Hansen et al. (2012) and Takahashi et al. (2009) have proposed to model daily

returns and realized volatility jointly. They extend ARCH type models and the stochastic volatility

model respectively. It is also interesting to apply their methods to option pricing.

16



Appendix Integrated volatility estimators with microstructure

noise

Here, we give a detailed review of various realized volatilities using the high-frequency returns em-

ployed in our analysis. Assume the 7-th intraday return �������� for day � contaminates with mi-

crostructure noise as follows

�������� 	 ���� � 
 7.��� ���� � 
 �7� ��.�� 
 9��� � 
 7.��� 9��� � 
 �7� ��.��

	 ���� � 
 7.��� ���� � 
 �7� ��.�� 
 :�������� (A.1)

where :������� �	 9��� � 
 7.��� 9��� � 
 �7� ��.�� and 9 represents microstructure noise.


 Realized volatility with 1-, 5-, 10-, 15- and 20-minute returns, 
 �1min�, 
 �5min�, 


�10min�, 
 �15min� and 
 �20min�.

Without microstructure noise, it would be desirable to use intraday returns sampled at the highest

frequencies. Since the highest frequencies available for the Nikkei 225 stock index is 1-minute, we

first calculate realized volatility using 1-minute returns (� 	 ���), which is denoted as 
 �1min�.

However, it may fail to satisfy the consistency condition when there is market microstructure noise

as usually documented in real high-frequency data. Another classical approach is to use realized

volatility constructed from intraday returns sampled at moderate frequencies rather than at the highest

frequencies. This approach can partially offset the bias of the microstructure effect. In practice,

researchers are necessarily forced to select a moderate sampling frequency. For example, it may be

regarded as around those frequencies for which realized volatility signature plots under alternative

sampling frequencies are leveled off. We provide the realized volatility signature plots in Figure 1

to roughly gauge the impact of microstructure frictions contained the high-frequency returns of the

Nikkei 225 index. In addition, evidence from previous studies suggests that it may be optimal to use

5 to 30-minute return data. Hence, we employ 
 �5min�, 
 �10min�, 
 �15min� and 
 �20min�

which are equal to the sum of squared 5-, 10-, 15- and 20-minute returns (� 	 ��� ��� �� and ��),

respectively.


 Optimally-sampled realized volatility, 
 ���.

The selection of a moderate sampling frequency is important to get an accurate estimate of the inte-

grated volatility because the noise-induced bias at high sampling frequencies can be traded off with

the variance reduction obtained by high-frequency sampling. To take this trade off between the bias

and variance into account, Bandi and Russell (2008) provide a theoretical justification for the choice

of optimal sampling frequency in terms of the mean squared error (MSE) criterion. They derive the

following approximated optimal number of observations �� based on the minimization of MSE in a
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finite sample

�� �
�

	4

�E�:����
� �

�

� (A.2)

where 	4 represents an integrated quarticity of the equilibrium price process (	4 	
� �
���

�
�����).

It is estimated by �	4 	 �
�

��
��� �



������� (realized quarticity) with low frequency returns such as 15-

minute returns. Following the consistent estimator of noise moment as shown by Bandi and Russell

(2008), E�:�� can be estimated by �E�:�� 	 �
�

��
��� �

�
������� at the highest frequencies. Thus, the

optimally-sampled realized volatility, 
 ���, is equal to the realized volatility with the optimal

number of observations calculated as ��� 	
�

�	4.��E �:���
�
	���

.


 The Bartlett-type kernel estimator in Barndorff-Nielsen et al. (2004b) with a finite sample

optimal number of autocovariances proposed by Bandi and Russell (2011), �����.


 �1min�, 
 �5min�, 
 �15min� and 
 ��� have the obvious drawback that they do not in-

corporate all data and whereby information is lost. The methods introduced here take advantage of

the rich sources in all high-frequency data. The problem of estimating the integrated volatility under

microstructure noise is similar to the autocorrelation corrections that are used in the long-run vari-

ance estimation in stationary time-series (Newey and West, 1987; Andrews, 1991). So it is natural

to consider kernel-based estimators of integrated volatility under microstructure noise. The literature

includes the earlier study by Zhou (1996) who proposes a particular kernel estimator which incorpo-

rates the first-order autocovariance. Barndorff-Nielsen et al. (2004b) derive kernel-based estimators

that are far more precise than that of Zhou (1996). They examine the Bartlett-type kernel estimator

defined as

�� 	

�
�� �

�

� � �

�

�
-� 
 �

��
���

�
� � �

�

�
-�� (A.3)

where -� 	
����

��� �������������������� is the �-th autocovariance of intraday returns and -� is equal

to realized volatility using returns sampled at the highest frequencies. This estimator weights the

realized volatility and the �-th return autocovariances by Bartlett weights. The optimal number of

autocovariances is given by the minimization of MSE of the estimator in finite sample (see equation

7 to 10 in Bandi and Russell, 2011 for exact MSE minimization expressions). There is a convenient

rule-of-thumb for choosing � in practice as proposed in Bandi and Russell (2011). The expression is

obtained as

�� �
�

�	
 �

���	4

� �

�

�� (A.4)

where 	
 denotes integrated volatility. 	
 and 	4 are estimated using realized volatility and realized

quarticity with lower frequency returns such as 15-minute returns. Hence, �� with a finite sample
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optimal number of autocovariances �� leads to �����.


 The two-scale estimator with an asymptotically optimal number of subsamples proposed by

Zhang et al. (2005), ��������.

Zhang et al. (2005) propose a two-scale or subsampling estimator in the spirit of the estimation of

the long-rum variance studied by Carlstein (1986). Denote the original grid of observation times as

� 	 ����� ���
�.�� ���
�.� � � � � ��. Consider � is partitioned into �� nonoverlapping subgrids,

�
���
��

, ; 	 �� � � � � ��, for example, the first sub-grid starts at � � � and takes every ���th arrival time

(����
��

	 ��� �� �� � 
 ��.�� �� � 
 � ��.� � � � �), and the second sub-grid starts at �� � 
 �.� and

takes every ���th arrival time (����
��

	 ��� � 
 �.�� �� � 
 �� 
 ���.�� �� � 
 �� 
 � ���.� � � � �).

Then, the realized volatility for the subgrid �
���
��

is defined as


 ���
��

	

���
���

��
���������� �����

� (A.5)

where ����������� ����� is subsampling return between transaction prices at times ���
�;��
7 ���.�

and �� � 
 �; � � 
 �7� �� ���.�. The two-scale estimator in Zhang et al. (2005) is given by

��� 	 ��. ���

���
���



���
��
� ���.��
� (A.6)

where �� 	 �� � �� 
 ��. �� and 
 is the realized volatility for the full grid �. The second term

corrects the bias in the first term. The asymptotic optimal number of subsamples �������� derived

by minimizing the estimator’s asymptotic variance is given by

�������� 	

�
� �E�:����

	4

����
����� (A.7)

	4 and E�:�� are estimated by realized quarticity with 15-minute returns and �E�:�� 	 �
�

��
��� �

�
�������

at the highest frequencies, respectively. Thus, �������� is equal to ��� with ��������.


 The two-scale estimator in Zhang et al. (2005) with a finite sample optimal number of subsam-

ples proposed by Bandi and Russell (2011), ������.

Barndorff-Nielsen et al. (2004b) show that ��� in (A.6) can be written as follows

��� 	

�
�� ��� 
 �

��

�
-� 
 �

��
���

�
� � �

�

�
-� � �

�
"� � (A.8)

where "� 	 �, and "� 	 "��� 
 ��������� 
 � � �
 �������������
� 
 ��������������� 
 � � �
 ���

� for

� � �. The third term guarantees consistency of ��� and differentiates ��� from the inconsistent
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��. This equation implies the two-scale estimator in Zhang et al. (2005) is almost identical to the

modified Bartlett kernel estimator. Bandi and Russell (2011) additionally show that the finite sample

MSEs of �� and ��� are very similar in practice. Hence, the ��� with �� 	 �� in (A.4)

corresponds to ������.


 The bias-corrected two-scale estimator in Zhang et al. (2005) with an asymptotically optimal

number of subsamples proposed by Zhang et al. (2005), �����������.

The two-scale estimator ��� has a finite sample bias as shown in Zhang et al. (2005) who provide

the approximate correction for this bias. On the other hand, Bandi and Russell (2011) report the

exact bias-correction form. Following a suggestion by Bandi and Russell (2011), the bias-corrected

estimator is defined as

������� 	 �� ��� ������ (A.9)

�� ��� �� 	

�
���� � 
 � �� � ��� � �

���

���

�

Since ������� is asymptotically equivalent to ���, the asymptotically optimal number of sub-

samples is given by ��������. Thus, ������� with �������� can be described by �������

����.


 The bias-corrected two-scale estimator in Zhang et al. (2005) with a finite sample optimal

number of subsamples proposed by Bandi and Russell (2011), ���������.

Since ������� is unbiased in a finite sample, the optimal number of subsamples is provided by

minimizing the finite sample variance of �������. Bandi and Russell (2008, 2011) show that the

optimal number of subsamples is defined as

������ 	 � ! "#�
�� ��������

�Var ���������� 	 � ! "#�
�� ��������

��
�� ��� ��

��

Var�����

�
� (A.10)

where, if ��.� � �.�,

Var����� 	����

� � �	
 ��

��
�

�
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� (A.11)

where ��
� represents a variance of microstructure noise 9 and is estimated by ���

� 	 �
��

��
��� �

�
�������

at the highest frequencies. Hence, ������� with ������ leads to ���������.


 The flat-top Bartlett kernel estimator with an asymptotically optimal number of autocovariances

proposed by Barndorff-Nielsen et al. (2008), ����������.

Barndorff-Nielsen et al. (2008) examine the following unbiased flat-top kernel type estimator (called

the realized kernel)

� 	 -� 

��
���

$ �<� �-� 
 -���� (A.12)

where -� 	
��

��� �������������������� with � 	 ��� � � � � � and the non-stochastic $�<�  ��� ��

for < 	 ���
�

is a weight function. The flat-top Bartlett kernel estimator is equivalent to � in

case where $�<� 	 � � <. For this class of kernels, Barndorff-Nielsen et al. (2008) show that the

asymptotic distribution of � � 	
 is mixed normal with zero mean and rate of convergence ����

when � 	 ����� where � is a constant. Then, the asymptotically optimal value of � which minimizes

the asymptotic variance is given by

�� � ����=
�

� � (A.13)

where =� 	 ��
�.
	
	4. Hence, � with $�<� 	 ��< and � 	 ������ corresponds to ����������.


 The flat-top cubic kernel estimator and the flat-top modified Tukey-Hanning kernel estimator

with an asymptotically optimal number of autocovariances proposed by Barndorff-Nielsen et

al. (2008), ���������� and �����������.

The estimators based on the cubic kernel and the modified Tukey-Hanning kernel are equivalent to

� with $�<� 	 �� �<� 
 �<� and $�<� 	 ��� cos/��� <���.�, respectively. When � 	 �=����,

� for this class of kernels is consistent at the rate of convergence ���
 as shown in Barndorff-Nielsen

et al. (2008). The asymptotically optimal value of � is expressed as

�� 	

����
$����

$����

�
� 


�
� 


�$���� $����

��$���� ��

�
� (A.14)

where � 	 	
.
	
	4, $���� 	

� �

�
$�<���<, $���� 	

� �

�
$��<���< and $���� 	

� �

�
$���<���<, where the

primes represent derivatives. The values of ($���� � $���� � $���� ) amount to �$���� � $���� � $���� � 	 ������� �����
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����� for the cubic kernel and �$���� � $���� � $���� � 	 ������� ����� ����� for the modified Tukey-Hanning

kernel. We define ���������� and ����������� as � with � 	 ��=���� at $�<� 	

�� �<� 
 �<� and $�<� 	 ��� cos/��� <���.�.


 The flat-top Bartlett kernel estimator, the flat-top cubic kernel estimator and the flat-top mod-

ified Tukey-Hanning kernel estimator with a finite sample optimal number of autocovariances

proposed by Bandi and Russell (2011), ������, ������ and �������.

Bandi and Russell (2011) provide an alternative way to choose the number of autocovariances in finite

samples. Denote � as Æ� with � � Æ � �. The optimal value of Æ is defined in Theorem 3 of Bandi

and Russell (2011) as follows

Æ� 	 � ! "#�
��Æ��

�
�bias����� 
 Var���

�
� (A.15)

where bias��� 	 � and

Var��� 	
	4

�
*$�* 
 ��


���*
$�*� 
 ��


��*
$�*� 
 ����

�	
 ���*$
*�� (A.16)

with * 	
�
�� �� $

�
�
Æ�

�
� � � � � $ �Æ���

Æ�

��
and $� > 	 �� � � � � � are (Æ� 
 �� Æ� 
 �) square matrices.

For ; � Æ�, the matrices $� and $
 are defined as

$���� �� 	 �� $��� 
 ;� � 
 ;� 	 ��

$
��� �� 	 �� $
��� �� 	 ��� $
��� �� 	 ��� $
��� �� 	 ��

$
�� 
 ;� � 
 ;� 	 �� $
�� 
 ;� ;� 	 ��� $
�;� ; 
 �� 	 ��� (A.17)

and zeros everywhere else. For ; � Æ�� �, the matrices $� and $� are defined as

$���� �� 	 �� $���� �� 	 ��� $���� �� 	 ��� $���� �� 	 ��

$��� 
 ;� � 
 ;� 	 �� $��� 
 ;� � 
 ;� 	 ��� $��� 
 ;� � 
 ;� 	 ��� $��� 
 ;� ;� 	 ��

$��;� � 
 ;� 	 �� $���� �� 	 ��� $���� �� 	 �� $���� �� 	 �� $���� �� 	 �����

$��; 
 �� ; 
 �� 	 ���; 
 ��� �� $��� 
 ;� � 
 ;� 	 ��; 
 ��� $��� 
 ;� � 
 ;� 	 ��; 
 ���

$��� 
 ;� ;� 	 ��; 
 ��.�� $��;� � 
 ;� 	 ��; 
 ��.�� (A.18)

and zeros everywhere else. Thus, � with � 	 Æ�� for the Bartlett kernel, cubic kernel and modified

Tukey-Hanning kernel leads to ������, ������ and �������, respectively.
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Table 2: Descriptive statistics of daily returns

Mean �������
(������)

Std. ������
Min �������
Max ������
Skewness �������

(������)
Kurtosis ������

(������)
LB(10) �����
The numbers in parentheses are standard errors.
LB(10) is the Ljung-Box statistic adjusted for het-
eroskedasticity following Diebold (1988) to test the
null hypothesis of no autocorrelations up to �� lags.
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Table 4: Moneyness of put options

�.� � ���� deep-in-the-money (DITM)
���� � �.� � ���� in-the-money (ITM)
���� � �.� � ���� at-the-money (ATM)
���� � �.� � ���� out-of-the-money (OTM)
���� � �.� deep-out-of-the-money (DOTM)
� � price of underlying asset and � � exercise price.
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Table 5: Options data description

DOTM OTM ATM ITM DITM
Sample size 268 101 115 92 71
Put price (yen)
Mean 21.30 108.44 339.61 888.34 2859.70
Std. 35.01 78.73 147.60 314.48 1298.70
Implied volatility (%)
Mean 31.53 24.83 22.86 22.55 39.79
Std. 8.91 8.20 7.98 8.52 14.11
Put price and implied volatility are the average of the bid and ask prices and the Black-
Scholes implied volatility.
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Table 6: Put option pricing performance using different models

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSE
GARCH ������� ������� ������� ������� �������� �������
EGARCH ������� ������� ������� ������� ������� �������
FIEGARCH �������� ������� ������� ������� ������� �������
ARFIMA ������� ������� ������� ������� ������� �������
ARFIMAX ������� ������� ������� ������� ������� �������
HAR ������� ������� ������� ������� ������� �������
HARX ������� �������� �������� �������� ������� ��������

BS ������� ������� ������� ������� ������� �������
MAE
GARCH ������� ������� ������� ������� �������� �������
EGARCH ������� ������� ������� ������� ������� �������
FIEGARCH ������� ������� ������� ������� ������� �������
ARFIMA ������� ������� ������� ������� ������� �������
ARFIMAX ������� �������� �������� ������� ������� ��������

HAR ������� ������� ������� ������� ������� �������
HARX ������� ������� ������� �������� ������� �������
BS ������� ������� ������� ������� ������� �������

RMSPE
GARCH ������ ������ ������ ������ ������� ������
EGARCH ������ ������ ������ ������ ������ ������
FIEGARCH ������ ������ ������ ������ ������ ������
ARFIMA ������ ������ ������ ������ ������ ������
ARFIMAX ������� ������� ������� ������� ������ �������

HAR ������ ������ ������ ������ ������ ������
HARX ������ ������ ������ ������ ������ ������
BS ������ ������ ������ ������ ������ ������

MAPE
GARCH ������ ������ ������ ������ ������� ������
EGARCH ������ ������ ������ ������ ������ ������
FIEGARCH ������ ������ ������ ������ ������ ������
ARFIMA ������ ������ ������ ������ ������ ������
ARFIMAX ������� ������� ������� ������� ������ �������

HAR ������ ������ ������ ������ ������ ������
HARX ������ ������ ������ ������ ������ ������
BS ������ ������ ������ ������ ������ ������

The values of loss functions for the ARFIMA(X) and HAR(X) models are calculated using�� �15min���.
* indicates the best model which minimizes the loss function.
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Table 7: Put option pricing performance using different realized volatilities without the Hansen and
Lunde (2005a) adjustment

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSE

 �1min�	
 ������� ������� ������� ������� ������� �������

 �5min�	
 ������� ������� ������� ������� ������� �������

 �10min�	
 �������� �������� �������� ������� �������� �������

 �15min�	
 ������� ������� ������� �������� ������� ��������


 �20min�	
 ������� ������� ������� ������� ������� �������

 ���	
 ������� ������� ������� ������� ������� �������
�����	
 ������� ������� ������� ������� ������� �������
��������	
 ������� ������� ������� ������� ������� �������
������	
 ������� ������� ������� ������� ������� �������
�����������	
 ������� ������� ������� ������� ������� �������
���������	
 ������� ������� ������� ������� ������� �������
����������	
 ������� ������� ������� ������� ������� �������
������	
 ������� ������� ������� ������� ������� �������
����������	
 ������� ������� ������� ������� ������� �������
������	
 ������� ������� ������� ������� ������� �������
�����������	
 ������� ������� ������� ������� ������� �������
�������	
 ������� ������� ������� ������� ������� �������

MAE

 �1min�	
 ������� ������� ������� ������� ������� �������

 �5min�	
 ������� ������� ������� ������� ������� �������

 �10min�	
 �������� �������� ������� ������� ������� ��������


 �15min�	
 ������� ������� �������� �������� �������� �������

 �20min�	
 ������� ������� ������� ������� ������� �������

 ���	
 ������� ������� ������� ������� ������� �������
�����	
 ������� ������� ������� ������� ������� �������
��������	
 ������� ������� ������� ������� ������� �������
������	
 ������� ������� ������� ������� ������� �������
�����������	
 ������� ������� ������� ������� ������� �������
���������	
 ������� ������� ������� ������� ������� �������
����������	
 ������� ������� ������� ������� ������� �������
������	
 ������� ������� ������� ������� ������� �������
����������	
 ������� ������� ������� ������� ������� �������
������	
 ������� ������� ������� ������� ������� �������
�����������	
 ������� ������� ������� ������� ������� �������
�������	
 ������� ������� ������� ������� ������� �������

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 7: (Continued) Put option pricing performance using different realized volatilities without the
Hansen and Lunde (2005a) adjustment

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSPE

 �1min�	
 ������ ������ ������ ������ ������ ������

 �5min�	
 ������ ������ ������ ������ ������ ������

 �10min�	
 ������� ������� ������ ������ ������� �������


 �15min�	
 ������ ������ ������ ������ ������ ������

 �20min�	
 ������ ������ ������� ������ ������ ������

 ���	
 ������ ������ ������ ������ ������ ������
�����	
 ������ ������ ������ ������ ������ ������
��������	
 ������ ������ ������ ������ ������ ������
������	
 ������ ������ ������ ������ ������ ������
�����������	
 ������ ������ ������ ������ ������ ������
���������	
 ������ ������ ������ ������ ������ ������
����������	
 ������ ������ ������ ������ ������ ������
������	
 ������ ������ ������ ������ ������ ������
����������	
 ������ ������ ������ ������ ������ ������
������	
 ������ ������ ������ ������ ������ ������
�����������	
 ������ ������ ������ ������ ������ ������
�������	
 ������ ������ ������ ������ ������ ������

MAPE

 �1min�	
 ������ ������ ������ ������ ������ ������

 �5min�	
 ������ ������ ������ ������ ������ ������

 �10min�	
 ������� ������� ������ ������ ������ �������


 �15min�	
 ������ ������ ������ ������ ������� ������

 �20min�	
 ������ ������ ������� ������� ������ ������

 ���	
 ������ ������ ������ ������ ������ ������
�����	
 ������ ������ ������ ������ ������ ������
��������	
 ������ ������ ������ ������ ������ ������
������	
 ������ ������ ������ ������ ������ ������
�����������	
 ������ ������ ������ ������ ������ ������
���������	
 ������ ������ ������ ������ ������ ������
����������	
 ������ ������ ������ ������ ������ ������
������	
 ������ ������ ������ ������ ������ ������
����������	
 ������ ������ ������ ������ ������ ������
������	
 ������ ������ ������ ������ ������ ������
�����������	
 ������ ������ ������ ������ ������ ������
�������	
 ������ ������ ������ ������ ������ ������

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 8: Put option pricing performance using different realized volatilities with the Hansen and
Lunde (2005a) adjustment

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSE

 �1min��� ������� �������� ������� ������� ������� �������

 �5min��� ������� ������� ������� ������� ������� �������

 �10min��� ������� ������� ������� ������� ������� �������

 �15min��� ������� ������� �������� �������� ������� �������

 �20min��� ������� ������� ������� ������� ������� �������

 ����� ������� ������� ������� ������� ������� �������
������� ������� ������� ������� ������� ������� �������
���������� ������� ������� ������� ������� �������� ��������

�������� ������� ������� ������� ������� ������� �������
������������� �������� ������� ������� ������� ������� �������
����������� ������� ������� ������� ������� ������� �������
������������ ������� ������� ������� ������� ������� �������
�������� ������� ������� ������� ������� ������� �������
������������ ������� ������� ������� ������� ������� �������
�������� ������� ������� ������� ������� ������� �������
������������� ������� ������� ������� ������� ������� �������
��������� ������� ������� ������� ������� ������� �������

MAE

 �1min��� ������� ������� ������� ������� ������� �������

 �5min��� ������� ������� ������� ������� ������� �������

 �10min��� ������� ������� ������� ������� ������� �������

 �15min��� ������� ������� �������� �������� ������� ��������


 �20min��� ������� ������� ������� ������� ������� �������

 ����� ������� ������� ������� ������� ������� �������
������� ������� ������� ������� ������� ������� �������
���������� ������� �������� ������� ������� �������� �������
�������� ������� ������� ������� ������� ������� �������
������������� ������ ������� ������� ������� ������� �������
����������� ������� ������� ������� ������� ������� �������
������������ ������� ������� ������� ������� ������� �������
�������� ������ ������� ������� ������� ������� �������
������������ ������� ������� ������� ������� ������� �������
�������� ������ ������� ������� ������� ������� �������
������������� ������� ������� ������� ������� ������� �������
��������� ������� ������� ������� ������� ������� �������

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 8: (Continued) Put option pricing performance using different realized volatilities with the
Hansen and Lunde (2005a) adjustment

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSPE

 �1min��� ������� ������� ������ ������ ������ ������

 �5min��� ������ ������ ������ ������ ������ ������

 �10min��� ������ ������ ������ ������ ������ ������

 �15min��� ������ ������ ������� ������� ������ �������


 �20min��� ������ ������ ������ ������ ������ ������

 ����� ������ ������ ������ ������ ������ ������
������� ������ ������ ������ ������ ������ ������
���������� ������ ������ ������ ������ ������� ������
�������� ������ ������ ������ ������ ������ ������
������������� ������ ������ ������ ������ ������ ������
����������� ������ ������ ������ ������ ������ ������
������������ ������ ������ ������ ������ ������ ������
�������� ������ ������ ������ ������ ������ ������
������������ ������ ������ ������ ������ ������ ������
�������� ������ ������ ������ ������ ������ ������
������������� ������ ������ ������ ������ ������ ������
��������� ������ ������ ������ ������ ������ ������

MAPE

 �1min��� ������ ������ ������ ������ ������ ������

 �5min��� ������ ������ ������ ������ ������ ������

 �10min��� ������ ������ ������ ������ ������ ������

 �15min��� ������ ������� ������� ������� ������ ������

 �20min��� ������ ������ ������ ������ ������ �������


 ����� ������ ������ ������ ������ ������ ������
������� ������ ������ ������ ������ ������ ������
���������� ������ ������ ������ ������ ������� ������
�������� ������ ������ ������ ������ ������ ������
������������� ������ ������ ������ ������ ������ ������
����������� ������� ������ ������ ������ ������ ������
������������ ������ ������ ������ ������ ������ ������
�������� ������ ������ ������ ������ ������ ������
������������ ������ ������ ������ ������ ������ ������
�������� ������ ������ ������ ������ ������ ������
������������� ������ ������ ������ ������ ������ ������
��������� ������ ������ ������ ������ ������ ������

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 9: Put option pricing performance of ARCH type models assuming the risk-neutrality and using
the Duan (1995) method

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSE
GARCH
Risk neutral ������� ������� ������� ������� ������� �������
Duan ������� ������� ������� ������� ������� �������

EGARCH
Risk neutral ������� ������� ������� ������� ������� �������
Duan ������� ������� ������� ������� ������� �������

FIEGARCH
Risk neutral ������� ������� ������� ������� ������� �������
Duan ������� ������� ������� ������� ������� �������

MAE
GARCH
Risk neutral ������� ������� ������� ������� ������� �������
Duan ������� ������� ������� ������� ������� �������

EGARCH
Risk neutral ������� ������� ������� ������� ������� �������
Duan ������� ������� ������� ������� ������� �������

FIEGARCH
Risk neutral ������ ������� ������� ������� ������� �������
Duan ������ ������� ������� ������� ������� �������

RMSPE
GARCH
Risk neutral ������ ������ ������ ������ ������ ������
Duan ������ ������ ������ ������ ������ ������

EGARCH
Risk neutral ������ ������ ������ ������ ������ ������
Duan ������ ������ ������ ������ ������ ������

FIEGARCH
Risk neutral ������ ������ ������ ������ ������ ������
Duan ������ ������ ������ ������ ������ ������

MAPE
GARCH
Risk neutral ������ ������ ������ ������ ������ ������
Duan ������ ������ ������ ������ ������ ������

EGARCH
Risk neutral ������ ������ ������ ������ ������ ������
Duan ������ ������ ������ ������ ������ ������

FIEGARCH
Risk neutral ������ ������ ������ ������ ������ ������
Duan ������ ������ ������ ������ ������ ������

“Risk neutral” shows the results assuming the risk-neutrality, which are the same as those
in Table 5. “Duan” shows the ones using the Duan (1995) method without assuming the
risk-neutrality.
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Table 10: Put option pricing performance with and without removing significant jumps from realized
volatility

DOTM OTM ATM ITM DITM Total
Sample size ��� ��� ��� �� �� ���
RMSE
RV ������� ������� ������� ������� ������� �������
RV-Jump ������� ������� ������� ������� ������� �������

MAE
RV ������� ������� ������� ������� ������� �������
RV-Jump ������� ������� ������� ������� ������� �������

RMSPE
RV ������ ������ ������ ������ ������ ������
RV-Jump ������ ������ ������ ������ ������ ������

MAPE
RV ������ ������ ������ ������ ������ ������
RV-Jump ������ ������ ������ ������ ������ ������

RV is �� �15min���. RV-Jump is the difference between RV and significant jump, which is
detected using the test statistic in (29) at the 0.1% significance level.
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Figure 1: Realized volatility signature plots

RVSR 
RVHL 

1 3 5 7 9 11 13 15 17 19
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

A
ve

ra
ge

 R
V

S
R
 a

nd
 R

V
H

L

Sampling frequency in minutes

RVSR 
RVHL 

41



Figure 2: Realized volatility
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(a) Some realized volatilities with the Hansen and Lunde (2005a) adjustment
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Figure 3: Parameter estimates
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