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Abstract

This paper analyses whether the realized generalized autoregressive
conditional heteroscedasticity (GARCH) model suggested by Hansen
et al. [2011] is useful for pricing Nikkei 225 put options. One advan-
tage of this particular model over classic autoregressive conditional
heteroscedasticity (ARCH)-type models is that it enables us to esti-
mate simultaneously the dynamics of stock returns using both realized
volatility and daily return data. Another advantage is that this model
adjusts for the bias in realized volatility caused by the presence of
market microstructure noise and non-trading hours, and therefore, it
can be apply to any realized measure. The analysis also examines
whether realized GARCH models using the realized kernels proposed
by Bardorff-Nielsen et al. [2008] improve the performance of option
pricing by comparing the results with those obtained using realized
volatility as the simple sum of the squares of the intra-day returns.
Comparing the estimation results based on the root mean square error
indicates that the realized GARCH models perform better than either
the exponential GARCH (EGARCH) or the Black–Scholes models in
terms of put option pricing. Moreover, the realized GARCH models
with the realized kernels without non-trading hour returns perform
better than those with realized volatility alone.
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1 Introduction

One of the most important variables in option pricing is the volatility of

the underlying asset, defined as the standard deviation of the returns of fi-

nancial assets. However, while the well-recognized Black and Scholes [1973]

option pricing model assumes that financial asset volatility is constant, it

is well known that volatility changes over time. Many alternative time se-

ries models are now available to describe the dynamics of volatility. One

traditional group of models is the autoregressive conditional heteroscedas-

ticity (ARCH)-type models using daily return data. More recently, realized

volatility models using high-frequency data have attracted the attention of

financial econometricians as an accurate estimator of volatility. An exten-

sion of both ARCH models and time series models of realized volatility is

included in the realized generalized ARCH (GARCH) models proposed by

Hansen et al. [2011]. This paper analyses whether this particular model is

useful for the pricing of Nikkei 225 stock index options. The results indicate

that the realized GARCH models in this analysis perform better than either

the exponential GARCH (EGARCH) or Black–Scholes (BS) models in terms

of put option pricing.

In the mainstream literature, a wide range of traditional ARCH-type

models, including the GARCH [generalized ARCH, Bollerslev, 1986] model,

GJR [Glosten et al., 1993] model, EGARCH [exponential GARCH, Nelson,

1991] model, APGARCH [asymmetric power GARCH, Ding et al., 1993]

model, and FIEGARCH [fractionally integrated EGARCH, Bollerslev and

Mikkelsen, 1996] model are commonly analysed. Many of these models have

already been applied to option pricing (Bollerslev and Mikkelsen [1999] and

Duan [1995]). In strong contrast, realized volatility is merely the sum of the

squared intra-day returns using high-frequency data. Ordinarily, to specify
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the dynamics of realized volatility, time series models are employed, includ-

ing autoregressive fractionally integrated moving average (ARFIMA) and

heterogeneous interval autoregressive (HAR) [Heterogeneous interval autore-

gressive, Corsi, 2009] models. Bandi et al. [2008], Stentoft [2008], Corsi et al.

[2009], Christoffersen et al. [2010] and Ubukata and Watanabe [2011] have

applied realized volatilities to option pricing.

Realized GARCH models have a number of advantages over both ARCH-

type models and time series models of realized volatility. One advantage

is that we can simultaneously estimate the dynamics of stock returns using

both realized volatility and daily return data. Another advantage is that

we can adjust for the bias in realized volatility caused by the presence of

market microstructure noise and non-trading hours. Importantly, to the

author’s best knowledge, relatively few studies have applied realized GARCH

models to option pricing compared with applications to volatility forecasting.

Accordingly, this paper applies realized GARCH models to the pricing of

Nikkei 225 stock index options traded at the Osaka Securities Exchange, and

compares their performance with those using EGARCH and BS models.

As discussed, in actual markets the presence of non-trading hours and

market microstructure noise may cause bias in realized volatility. Some meth-

ods are available that mitigate the effect of microstructure noise on a realized

volatility, such as realized kernels. We use the realized kernels proposed by

Bardorff-Nielsen et al. [2008]. For the bias associated with non-trading hours,

we employ the bias-adjusted method proposed by Hansen and Lunde [2005].

When using a log-linear specification, realized GARCH models can adjust

the bias in realized volatility in the same way as Hansen and Lunde [2005].

To test the effects of this bias adjustment in the realized GARCH mod-

els, we estimate realized GARCH models with realized volatilities and kernels
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adjusted after considering market microstructure noise. Following the esti-

mation of the realized GARCH models, we examine whether the realized

kernel methods improve the performance of option pricing by comparing the

results with those obtained using realized volatility, which is simply obtained

by summing the squares of the returns. If correcting the bias in realized

GARCH models were sufficient for adjusting for the total bias in realized

volatility, option pricing performance would not improve when using realized

kernels.

Our main findings are as follows. First, in terms of option pricing, we find

that the realized GARCH models perform better than either the EGARCH

or BS models. Second, we also find that the realized GARCH models with

realized kernels without the adjustment for non-trading returns also perform

better. This suggests that the bias adjustment in realized GARCH models is

not sufficient to adjust for the total bias arising from market microstructure

noise.

The remainder of the paper is structured as follows. Section 2 describes

the realized GARCH models. Section 3 describes the data used in the analysis

and discusses integrated and realized volatility. In Section 4, we present the

estimation results for the realized GARCH models. Section 5 explains the

method of calculating the option prices and compares the performance of the

various option pricing models in the analysis. Section 6 concludes.

2 Realized GARCH models

We begin with a brief review of the realized GARCH models proposed by

Hansen et al. [2011]. Three equations characterize realized GARCH models,

namely, the return equation, the GARCH equation, and the measurement
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equation. To start with, the return equation is specified as

rt = E(rt|Ft−1) + εt, εt =
√

htzt, zt ∼ i.i.d.N(0, 1), (2.1)

where rt is the daily return on day t, ht is the volatility of the daily return rt,

E(rt|Ft−1) is the expectation of rt conditional on the information available

up to day t−1, and zt is the standardized error, which follows an independent

and identical normal distribution with a mean of zero and a variance of one.

In this analysis, the conditional expected return is specified as E(rt|Ft−1) =

r + νr

√
ht, where r is the risk-free rate. We specify this same equation not

only for the realized GARCH models, but also for the EGARCH models.

The second equation specified is the GARCH equation. We use the sim-

plest version, the log realized GARCH(1,1) model

ln ht = ω + β ln ht−1 + γ ln xt−1, (2.2)

where xt is the realized volatility. 1

The differences between this equation and those found in conventional

GARCH models are as follows. First, while GARCH models specify ht as

a function of past values of ht and error terms (εt or zt), realized GARCH

models instead specify it as a function of the past value of latent volatility ht

and realized volatility xt. Second, the persistence of volatility is not summa-

rized by β + γ in realized GARCH models. Third, the error term for return

rt affects latent volatility ht through the realized volatility xt−1 in realized

GARCH models.

1Generally, the realized GARCH (p, q) model replaces eq.(2.2) with

lnht = ω +
p∑

i=1

βi lnht−i +
q∑

j=1

γj lnxt−j .

We estimate only the realized GARCH(1,1) models.
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The third equation specified is the measurement equation, where τ(zt) is

known as the leverage function. This equation is specified as

ln xt = ξ + φ ln ht + τ(zt) + ut, ut ∼ N(0, σ2
u), (2.3)

τ(zt) = τ1zt + τ2(z
2
t − 1). (2.4)

Given eq.(2.3) and eq.(2.4), realized volatility (xt) depends on the current

value of zt. Moreover, the form of eq.(2.4) is convenient because it en-

sures that E{τ(zt)} = 0 for any distribution of zt, so long as E(zt) = 0

and Var(zt) = 1. 2

Although realized volatility includes bias caused by microstructure noise

and non-trading hours as discussed below, these biases in realized volatility

(xt) can be corrected with eq.(2.3). For example, if ξ = 0 and φ = 1, the re-

alized volatility is an unbiased estimator of the true volatility. Alternatively,

if ξ < 0 and φ < 1, realized volatility has a downward bias. Therefore, the

measurement equation does not require xt to be an unbiased measure of ht,

and we can estimate the realized GARCH models using a realized volatility

that includes bias. We should then expect that ξ < 0 and φ < 1.

The leverage function τ(zt) expresses the volatility asymmetry. This re-

flects the well-known phenomenon in stock markets of a negative correlation

between today’s return and tomorrow’s volatility. If τ1 < 0, xt will be larger

when zt < 0 than when zt > 0

ln xt = ξ + φ ln ht + τ1zt + τ2(z
2
t − 1) + ut.

2Hansen et al. [2011] considered leverage functions that are constructed from Hermite
polynomials

τ(z) = τ1z + τ2(z2 − 1) + τ3(z3 − 3z) + τ4(z4 − 6z2 + 3) + · · · ,

and they chose τ(zt) = τ1zt + τ2(z2
t − 1).
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Then, if γ > 0, ht+1 become larger when zt < 0

ln ht+1 = ω + β ln ht + γ ln xt.

Thus, when τ1 < 0 and γ > 0, the volatility asymmetry is observed.

We can derive the volatility persistence from the reduced form. More

specifically, a realized GARCH (1,1) model composed of eq.(2.1), eq.(2.2)

and eq.(2.3) implies a simple reduced-form model for {rt, ht}

ln ht = µh + π ln ht−1 + γwt−1,

ln xt = µx + π ln xt−1 + wt − βwt−1,

where π = β + φγ, wt = ut + τ(zt), µh = ω + γξ, µx = φω + (1− β)ξ, and wt

is the error term in the measurement equation. The persistence of volatility

is summarized by π = β + φγ. Here, β and φ are the parameters reflecting

past volatility in the GARCH equation, and γ is the volatility parameter in

the measurement equation. Thus, we can calculate the volatility persistence

using both the GARCH equation and the measurement equation. In this

model, volatility is stationary if |π| < 1.

Hansen et al. [2011] proposed realized GARCH models with both a lin-

ear specification and a log-linear specification. An obvious advantage of a

logarithmic specification is that it automatically ensures positive volatility.

Moreover, log realized GARCH models can adjust the bias of realized volatil-

ity in much the same way as Hansen and Lunde [2005] described below. Thus,

we estimate these models with a log-linear specification.

Realized GARCH models can be estimated using quasi-maximum likeli-

hood estimation techniques such that the estimator is distributed asymptot-

ically normal. We adopt Gaussian specifications for the error terms ut and

zt in the return and measurement equations, respectively, such that the log
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likelihood function is given by

l(r, x; θ) = −1

2

n∑

t=1

[
ln ht +

ε2
t

ht

+ ln σ2
u +

u2
t

σ2
u

]
. (2.5)

Here, θ is all of the parameters in the realized GARCH models. 3 Under

suitable regularity conditions, they have an asymptotic normal distribution.

See Hansen et al. [2011] for details.

While we assume that ut and zt follow normal distributions, it is well

known that the distribution of stock returns is leptokurtic. If we use Stu-

dent’s t distribution or anything other than normal distributions for the

standardized error term zt in eq.(2.1), we can specify the log likelihood func-

tions and estimate the realized GARCH models using maximum likelihood

estimation. In such a case, however, following the estimation of the realized

GARCH models, we cannot apply the Duan [1995] method to option pricing

(Duan [1999]). To apply the Duan [1995] method to option pricing, we thus

adopt a Gaussian specification for zt.

3 Data

We employ Nikkei NEEDS-TICK data for estimating the realized GARCH

models and option pricing simulations. The Japanese certificate of deposit

(CD) rate serves as the risk-free rate. We now explain the method of data

3We can divide the log likelihood function into two parts by transforming

l(r, x; θ) = −1
2

n∑
t=1

[h(rt|Xt−1) + l(Xt|Xt−1)] . (2.6)

The first part is h(rt|Xt−1) = lnht + ε2t
ht

, which is the density determined by the normal
density of rt with mean E(rt|Ft) and variance ht. If we have information about the t− 1
period, we can calculate ht because there is no t period stochastic variable in eq.(2.2).
The second part is l(Xt|Xt−1) = lnσ2

u + u2
t

σ2
u
, which is the normal density with mean

µ + φ ln(σ2
t ) + τ1zt + τ2(z2

t − 1) and variance σ2
u.
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cleaning following Ubukata and Watanabe [2011], used for the closing prices

of the Nikkei 225 stock index and the put option prices.

The dataset comprises the Nikkei 225 stock index price for each minute

from 9:01 to 11:00 in the morning session and from 12:31 to 15:00 in the

afternoon session. On occasion, the time stamps for the closing prices in the

morning and afternoon sessions are slightly after 11:00 and 15:00, because

the recorded time appears when the Nikkei 225 stock index is calculated. In

such cases, we use all prices up to closing prices. 4

Nikkei 225 stock index options traded at the Osaka Securities Exchange

are European options exercised only on the second Friday of each expiration

month. For the most part, put options on the Nikkei 225 stock index trade

more heavily than the call options. Further, the put options that have a

maturity of 30 days (29 days if the month includes a holiday weekend) trade

more heavily than other put options with maturities shorter or longer than

30 days. In what follows, we concentrate on put options with a maturity

of 30 days. On such days, we consider put options with different exercise

prices whose bid and ask prices are both available at the same time between

14:00 to 15:00. For each option, we use the average of the bid and ask prices

instead of the transaction prices because transaction prices are subject to

market microstructure noise, such as the bid–ask bounce, as suggested by

Campbell et al. [1997]. We also exclude some kinds of put options not priced

in the theoretical range from a lower bound at PT = max(0, K exp(−rτ)) to

an upper bound at PT = K exp(−rτ).

4In their analysis, Hansen and Lunde [2005] use intra-day returns constructed for both
bid and ask prices using the previous-tick interpolation method. We define the overnight
return as the log difference between the first price (mid quote) of the day and the last
price (mid quote) of the preceding day.
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3.1 A realized volatility and a realized kernel

We begin with a brief review of integrated volatility and realized volatility us-

ing the following continuous price process. We assume that the price process

satisfies

dp(s) = µ(s)ds + σ(s)dW (s), (3.7)

where W is a standard Brownian motion, and µ and σ are smooth time-

varying (random) functions that are independent of W . We let integer values

of t correspond to the closing time of the afternoon session. The volatility

over the interval (t− 1, t) is then defined as

IVt =
∫ t

t−1
σ2(s)ds. (3.8)

We refer to this as the integrated volatility (IV) for day t.

The realized volatility (RV) is an empirical estimate of the IV constructed

from intra-day returns. For the special case where intra-day returns are

equidistant in calendar time, we define the intra-day returns

r(t− 1 + 1/m), r(t− 1 + 2/m), . . . , r(t)

where m is the number of intra-day returns. RV for day t is defined as the

sum of squared intra-day returns

RVt =
m∑

i=1

r(t− 1 + i/m)2. (3.9)

RVt will provide a consistent estimator of IVt

plim
m→∞

RVt = IVt.

There are two problems in calculating RV: the first is the presence of non-

trading hours, and the second is the presence of microstructure noise. We
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show that realized GARCH models are able to adjust for the bias associated

with non-trading hours. We then detail the method used in Bardorff-Nielsen

et al. [2008] for mitigating the effect of microstructure noise. Following this,

we examine whether realized GARCH models using the bias-adjusted RV

improve the option pricing performance by comparing the results with those

obtained using RV.

One problem in calculating RV is the presence of non-trading hours. To

calculate a RV that spans a full day, one also requires high-frequency data for

the whole day. However, most equities trade for only a fraction of the day.

For example, the Tokyo Stock Exchange is only open 9:00–10:00 (morning

session) and 12:30–15:00 (afternoon session), so it is impossible to obtain

high-frequency returns for the periods 15:00–9:00 (overnight) and 11:00–12:30

(lunchtime). Moreover, in Japan on the first and last trading days of the year,

the market is only open 9:00–11:00. In calculating RV using the above data,

one may include returns on the non-trading hours, but this can make RV

noisy because such returns include much discretization noise. On the other

hand, if we calculate the RV as the sum of squared trading hours’ returns

only, RV may underestimate IV.

In terms of the bias associated with the presence of non-trading hours,

Hansen and Lunde [2005] consider a way to extend the RVt, which is only

available for trading hours, to a measure of volatility for the full day. Here,

RV Nt indicated RV without non-trading hour returns. Their scaled estima-

tor is

RV SCt ≡ δ̂RV Nt, δ̂ =

∑n
t=1(rt − r̄)2

∑n
t=1 RV Nt

, (3.10)

where rt is the daily return, r̄ = 1
n

∑n
t=1 rt, and δ̂ is a consistent estimator of

δ ≡ E[σ2
t ]/E[RV Nt]. The mean of the RV SCt is equal to the volatility of

daily returns.
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The correcting bias in log realized GARCH models is the same as the

method of Hansen and Lunde [2005] in eq.(3.10). When x′t = RV SCt and

xt = RV Nt, a realized GARCH model using x′t is

ln ht = ω + β ln ht−1 + γ ln x′t−1, (3.11)

ln x′t = ξ + φ ln ht + τ(zt) + ut. (3.12)

From ln x′ = ln δ̂ + ln xt,

ln ht = ω + γ ln δ̂ + β ln ht−1 + γ ln xt−1, (3.13)

ln xt = ξ − ln δ̂ + φ ln ht + τ(zt) + ut. (3.14)

The constant estimates of RV SCt in eq.(3.11) and eq.(3.12) are different

from RV Nt in eq.(3.13) and eq.(3.14), but other estimates of RV SCt are

the same as those of RV Nt. Therefore, when we estimate realized GARCH

models, we do not need to calculate RV SCt and estimate them with RV Nt.

The other problem in the analysis is the presence of microstructure noise,

including the bid–ask bounce, non-synchronous trading, rounding errors, and

misrecordings (see Campbell et al. [1997], Ch. 3). Without microstructure

noise, it would be desirable to use intra-day returns sampled at the high-

est frequencies. When there is microstructure noise, market microstructure

effects cause autocorrelation in intra-day returns, and so RV includes not

only the variance of the efficient price but also the variance of microstructure

noise. If there is microstructure noise, its variance becomes relatively large

in the variance of the true return. That is, the bias caused by microstructure

noise increases as the time interval approaches zero.

There are some methods available for mitigating the effect of microstruc-

ture noise on RV. The classic approach is to use RV constructed from intra-

day returns sampled at a moderate frequency. In practice, researchers are
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necessarily obliged to select a moderate sampling frequency. We calculate

realized volatilities using 3- and 5-minute intra-day returns.

To mitigate the effect of a microstructure noise, one of the kernel-based

estimators is proposed by Bardorff-Nielsen et al. [2008]. These estimators,

called realized kernels (RKs) or flat-top kernels, are specified as

RKt = γ̂0 +
q∑

s=1

k(x) (γ̂s + γ̂−s) , x =
s− 1

H
, (3.15)

γ̂s =
m∑

j=1

r(t− 1 + j/m)r(t− 1 + (j − s)/m), s = −q, . . . , q.

(3.16)

Here, the non-stochastic k(x) for x ∈ [0, 1] is a weight or kernel function, γ̂0

represents the RV, and γ̂s represents the s−th autocovariance of the intra-

day returns. The term of RKt − γ̂0 =
∑q

s=1 k(x) (γ̂s + γ̂−s) is the realized

kernel correction to RV for market friction. 5

From Theorem 4 of Bardorff-Nielsen et al. [2008], the asymptotic distri-

bution of this estimator depends on the conditions of k(x) and H. First,

they show that if k(0) = 1, k(1) = 0, and H = c0n
2/3, the resulting estimator

is asymptotically mixed Gaussian, converging at rate n1/6. Here, c0 is an

estimable constant that can be optimally chosen to minimize the asymptotic

variance of this estimator. For example, Bartlett, 2nd order, Epanechnikov

kernels are this class of kernels. 6

When they additionally require that k′(0)2 + k′(1)2 = 0, then by taking

H = c0n
1/2, the resulting estimator is asymptotically mixed Gaussian, and

consistent at the rate of convergence n1/4 as shown in Bardorff-Nielsen et al.

5See Andrews [1991] for the usual kernel estimators and Hansen and Lunde [2006],
Bardorff-Nielsen et al. [2008], and Bandi et al. [2008] for other kernel-based estimators of
IV.

6This special case of a so-called flat-top Bartlett kernel is particularly interesting as its
asymptotic distribution is the same as that of the two-scaled estimator.
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[2008]. Using this result, it is clear that this estimator converges faster and

more efficiently than the previous estimator. Thus, we focus on this estima-

tor. For example, the cubic, 5th to 8th order, Parzen, and Tukey–Hanning

kernels are in this class of kernels. 7

Moreover, with regard to these estimators requiring additional conditions,

Bardorff-Nielsen et al. [2008] compared the lower bound of parametric effi-

ciency for some kernels in this class, including the cubic, 5th to 8th order,

Parzen, and modified Tukey–Hanning kernels. They concluded that only

the modified Tukey–Hanning kernel, as detailed below, approached the lower

bound of parametric efficiency. Given this particular kernel is more efficient

than other kernels sometimes employed, we focus on the modified Tukey–

Hanning kernel estimator.

The flat-top modified Tukey–Hanningp kernel is defined by

k(x) = sin2
{

π

2
(1− x)p

}
.

This is modified because the case p = 1, where sin2{π/2(1 − x)} = {1 +

cos(πx)}/2, corresponds to the usual Tukey–Hanning kernel. They focus on

the Tukey–Hanning2(p = 2) kernel in their simulation study because it is

near efficient and does not require too many intra-day returns. We employ

the flat-top Tukey–Hanning kernel with p = 2 to mitigate the effects of

microstructure noise

THt = γ̂0 +
q∑

s=1

k(x) (γ̂s + γ̂−s) , x =
s− 1

H
, (3.17)

k(x) = sin2
{

π

2
(1− x)2

}
,

γ̂s =
m∑

j=1

r(t− 1 + j/m)r(t− 1 + (j − s)/m), s = −q, . . . , q.

7This is a special case, as when k(x) = 1 − 3x2 + 2x3, this estimator has the same
asymptotic distribution as the multiscale estimator.
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Moreover, THNt denotes the flat-top modified Tukey–Hanning kernel with

p = 2 without non-trading hour returns.

We estimate the asymptotically optimal value of H using 15-minute re-

turns and the highest frequency 1-minute returns. When H = cζ
√

n and

m → ∞, the asymptotically optimal value of c that minimizes the asymp-

totic variance is given by

c∗ =

√√√√√ρ
k1,1

k0,0



1 +

√√√√3k0,0k2,2

ρ(k1,1)2



, (3.18)

ζ2 = σ2
η/

√
IQ, ρ = IV/

√
IQ,

ˆIQ =
ml

3

ml∑

j=1

r(t− 1 + j/ml)4,

σ̂2
η =

1

2mh

mh∑

i=1

r(t− 1 + j/mh)2,

where (k0,0, k1,1, k2,2) = (0.219, 1.71, 41.7). ml and mh are the number of

low-frequency returns and the highest frequency returns. ˆIQ and ˆIV are es-

timated using low-frequency returns, such as 15 minutes, and σ̂2
η is estimated

using highest frequency returns, such as 1 minute. ˆIQ is called realized

quarticity. See Bardorff-Nielsen et al. [2008] for details. 8

Tab.1 summarizes the descriptive statistics for RV and RK. First, as

shown, the means of RVt, RV Nt, THt and THNt become larger as the sam-

pling frequencies increase. This lies contrary to our expectation that RVt

increase as the sampling frequency increases because of microstructure noise.

Nonetheless, similar results arise in the volatility signature plots in Hansen

and Lunde [2006] and Takahashi et al. [2009]. Therefore, we consider that

8From an empirical perspective, Barndorff-Nielsen et al. [2008] point out that end
effects can be safely ignored in practice, despite their important theoretical implications
for the asymptotic properties of the realized kernel estimators. Thus, we use all samples
to calculate the RKs.
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this phenomenon is because of the limited frequency available for our data.

Second, the standard deviations of RVt, RV Nt, THt and THNt become

larger as the time interval increases, and this confirms that intra-day returns

become noisy because of the discretization effect as the interval increases.

These results suggest that a more precise estimator of the true volatility may

be obtained by correcting the bias associated with non-trading hours and

microstructure noise in RVt. Third, the means of RV Nt and THNt are rel-

atively lower because RV Nt and THNt are the RV and RK only for trading

hours.

4 Estimation results

We estimate the realized GARCH models using 1,000 daily RVs up to the day

before the options trade. The estimated period is from 2001/05 to 2007/09

(77 months). The first options start trading on 9 May 2001. We first esti-

mate the parameters in the realized GARCH models using 1,000 daily RVs,

RKs, and returns up to 8 May 2001. We then repeat this procedure up to

September 2007.

We first discuss the estimates of the parameters in the measurement

equation. The persistence in volatility can be measured by the estimates of

π = β+φγ. We find this is about 0.95, regardless of which realized measure is

used. This result exhibits the well-known phenomenon of high persistence in

volatility. Next, the asymmetry parameters τ1 are estimated to be negative

for RVt and RV Nt. This is also consistent with a well-known phenomenon

in stock markets of a negative correlation between today’s return and to-

morrow’s volatility, such as in Nelson [1991]. However, the estimates of the

asymmetry parameters τ1 are not statistically significant for THt and THNt.

Finally, the estimate for νr is only significant at the beginning of 2007. The

15



implication is that there is only a risk premium in this period.

For example, Tab.2 provide the estimation results for 2007/09. As shown,

the estimates of ξ are negative while those for φ are less than one. Conse-

quently, RVt, RV Nt, THt and THNt exhibit downward biases. While τ1

are estimated to be negative for RVt and RV Nt, the estimates of τ1 are not

significant for THt and THNt.

From the results for νr, we can assume risk neutrality. If traders are risk

neutral, the expected return is r where r is the risk-free rate and rt is the

discrete return, while the expected return is r − 1/2ht when rt is the log

per cent return. In fact, when we analyse the log per cent return, r − 1/2ht

becomes negative because the risk-free rate r is near zero. This is impossible

on theoretical grounds. Thus, we analyse discrete daily close-to-close returns

rt =
St − St−1

St−1

× 100.

We may represent the expected return under the assumption of risk neutrality

by

rt = r + εt, εt =
√

htzt, zt ∼ i.i.d.N(0, 1). (4.19)

We estimate realized GARCH models using the above return equation eq.(4.19).

Under the assumption of risk neutrality, the persistence in volatility π =

β + φγ is estimated to be about 0.95. The estimates of the asymmetry

parameters τ1 are negative for RVt and RV Nt, but not significant for THt

and THNt. This result is the same as that without the assumption of risk

neutrality. Tab.3 provides the estimated results for 2007/09 using the risk-

neutral models.
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5 Put option pricing

Given the parameter estimates of the realized GARCH models obtained, we

now calculate the put option prices. We begin with a brief review of put

option pricing using realized GARCH models and calculate put option prices

using the risk-neutral return equation in eq.(4.19). Afterwards, we explain

the details of Duan [1995] in Section 5.1, and calculate put option prices

using eq.(2.1).

The price of a European put option is equal to the discounted present

value of the expectation of put option prices on the expiration date. For

example, the price of a European put option with the exercise price K and

survival period τ is given by

PT =
(

1

1 + r

)τ

EQ
[
max

(
K − S̃T+τ , 0

)]
. (5.20)

Here, S̃T+τ is the price of the underlying asset on the expiration date T + τ .

We cannot evaluate this expectation analytically if the volatility of the

underlying asset follows realized GARCH models. We instead calculate this

expectation by simulating S̃T+τ from the realized GARCH models. Suppose

that (S
(1)
T+τ , . . . , S

(m)
T+τ ) are simulated. Then, eq.(5.20) may be calculated as

PT ≈
(

1

1 + r

)τ 1

l

l∑

i=1

max(K − Ŝ
(i)
T+τ , 0). (5.21)

For variance reduction, we use the control variate and the negative correlation

jointly. We set m = 10, 000.

For comparison, we also calculate option prices using the EGARCH and

BS models. EGARCH(1,0) model (Nelson[1991]) is specified as

ln ht = ω + β {ln ht−1 − ω}+ θzt−1 + γ{|zt−1| − E(|zt−1|)}. (5.22)
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The well-known BS (Black and Scholes [1973]) formula is specified as

PBS = −ST N(−d1) + K exp(−r · τ)N(−d2), (5.23)

d1 =
ln(ST /K) + (r + σ2/2)τ√

σ2τ
,

d2 =
ln(ST /K) + (r − σ2/2)τ√

σ2τ
.

Here, volatility σ is the standard deviation of daily returns over the past 20

days.

To measure the performance of option pricing, we use four loss functions,

mean errors (ME), mean percentage errors (MPE), root mean squared errors

(RMSE) and root mean squared percentage errors (RMSPE), defined as

ME =
1

NP

NP∑

i=1

(
P̃i − Pi

)
, MPE =

1

NP

NP∑

i=1

(
P̃i − Pi

Pi

)
,

RMSE =

√√√√ 1

NP

NP∑

i=1

(
P̃i − Pi

)2
, RMSPE =

√√√√√ 1

NP

NP∑

i=1

(
P̃i − Pi

Pi

)2

,

where NP is the number of put options used for evaluating performance and

P̃i is the price of the ith put option calculated by the realized GARCH,

EGARCH or BS models. Pi is its market put price calculated as the average

of the bid and ask prices at the same time closest to 15:00.

From the results of put option pricing under the assumption of risk neu-

trality in Tab.4, we can see that the RMSPE of the realized GARCH models

are smaller than for any of the EGARCH or BS models, except for that

of RVN using 3-minute intra-day returns. Next, the RMSE of the real-

ized GARCH models with THt and THNt are smaller than for any of the

EGARCH or BS models. This result is not consistent with that using RM-

SPE. Because of the functional forms of RMSPE and RMSE, the difference

between the results implies that the realized GARCH models perform well
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when the put option price is low, but not when the put option price is high.

Thus, the realized GARCH models perform well with RMSPE. Moreover,

the best performing models are the realized GARCH model with THNt for

both RMSE and RMSPE. Accordingly, the flat-top Tukey–Hanning kernel

method improves pricing performance in option pricing.

5.1 Duan convert

In the return equation, if the expected return is not equal to the risk-free rate,

it implies that risk neutrality is not assumed. Unless traders are risk neutral,

we must convert the physical measure P into the risk-neutral measure Q.

After converting the models, we evaluate option prices under the risk-neutral

measure Q.

Duan [1995] makes the following assumptions on Q, called the local risk-

neutral valuation relationship (LRNVR):

• rt|Ft−1 follows a normal distribution under the risk-neutral measure Q,

• EQ[rt|Ft−1] = r,

• V arQ[rt|Ft−1] = V arP [rt|Ft−1].

For the realized GARCH models, as zt follows a standard normal distribution,

the conditional return under the physical measure P follows

rt|Ft−1 ∼ N(E(rt|Ft−1), ht|Ft−1),

where the mean of conditional return E(rt|Ft−1) and the variance ht|Ft−1 are

non-stochastic variables. Thus, the Duan [1995] method can be applied to

realized GARCH models.
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Daily return under the physical measure P is

rt = E(rt|Ft−1) + εt,

εt =
√

htzt, zt ∼ i.i.d.N(0, 1).

In this study, E(rt|Ft−1) = νr

√
ht. Under the assumptions of LRNVR, daily

returns under the risk-neutral measure Q must be represented by

rQ
t = r + ηt, (5.24)

εQ
t = ηt + r − E(rt|Ft−1), (5.25)

zQ
t =

εQ
t√
hQ

t

. (5.26)

All we have to do for volatility is to substitute zQ
t in the realized GARCH

models.

From the results using the Duan [1995] method in Tab.5, both RM-

SPE and RMSE for the realized GARCH models are smaller than for the

EGARCH or BS models, and the realized GARCH models with THNt per-

forms better than RV, RV Nt and THt. These results are consistent with the

results of RMSPE under the assumption of risk neutrality. Consequently, the

realized GARCH models perform well. In addition, we compare the results

with the results in Tab.4. Excepting THNt using 5-minute intra-day returns,

RMSE and RMSPE using the Duan [1995] method in Tab.5 are smaller than

those under the assumption of risk neutrality in Tab.4. This means that the

Duan [1995] method improves pricing performance, even though the estimate

of the risk premium parameter is not significant.

6 Conclusions

This paper compares the pricing performance of option prices using realized

GARCH and EGARCH models. The main results are as follows. First,
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from the results assuming risk neutrality, the realized GARCH models with

RKs perform better than either the EGARCH or BS models. However, the

realized GARCH models with RV improve the performances for RMSPE,

but do not improve them for RMSE. Using these results, we can see that

realized GARCH models with RV improve pricing performance when the put

option price is low. Without the assumptions of risk neutrality, the realized

GARCH models with RV and RK perform better than the EGARCH and BS

models for both RMSE and RMSPE. Therefore, with the exception of the

RMSE of the realized GARCH models with RV under the assumptions of risk

neutrality, the realized GARCH models perform better than the EGARCH

and BS models when using daily returns.

Irrespective of the risk neutrality assumption, the best performing mod-

els are the realized GARCH models with THt without the lunch-time and

overnight returns. From these results, we can see that the flat-top Tukey–

Hanning kernel method improves performance in option pricing. Therefore,

correcting for the bias of realized GARCH models is not sufficient; then, the

performance of option pricing improves when using accurate estimators of

integrated volatility.

Several extensions are possible. First, we assume the risk-neutral volatil-

ity dynamics are the same as the physical dynamics. However, Corsi et al.

[2009] and Christoffersen et al. [2010] propose option pricing methods when

the risk-neutral volatility dynamics differ from the physical volatility dy-

namics. Barone-Adesi et al. [2008] propose a method for pricing options that

allows for different distributions (volatilities) under the physical measure P

and the risk-neutral measure Q. We should adapt these methods for realized

GARCH models. Second, we did not consider jumps in intra-day returns.

Barndorff-Nielsen and Shephard [2004] and Dobrev and Szerszen [2010] have
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proposed a method to calculate realized volatility taking account of jumps.

It will be interesting to see whether the performance of option pricing will

improve using these realized measures. Finally, Takahashi et al. [2009], Do-

brev and Szerszen [2010], and Koopman and Scharth [2011] propose realized

SV models, which have similar advantages as realized GARCH models. We

should compare these with the performance of realized GARCH models.
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Table 1: Descriptive statistics of daily realized measures

Mean Std.Dev. Min Max
RV 3-minute 1.310 0.965 0.085 9.829

5-minute 1.352 0.987 0.082 9.078
RVN 3-minute 0.863 0.725 0.056 8.975

5-minute 0.895 0.735 0.058 8.049
TH 3-minute 1.678 2.110 0.014 36.894

5-minute 1.697 2.172 0.002 36.146
THN 3-minute 0.995 1.305 0.007 21.160

5-minute 1.008 1.352 0.003 19.945
RV denotes realized volatility, RVN is RV without non-trading
hour returns, TH is the flat-top Tukey–Hanning kernel with p = 2
and THN is TH without non-trading hour returns. ”3-minute”
and ”5-minute” are the intraday returns intervals used for calcu-
lating the volatilities.
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Table 2: Estimation results for 2007/09

νt ω β γ log likelihood
3-minute RV 0.051 0.139∗ 0.626∗ 0.441∗ −393.822

(0.032) (0.027) (0.059) (0.075)
RVN 0.042 0.388∗ 0.541∗ 0.431∗ −181.456

(0.032) (0.047) (0.046) (0.045)
TH 0.041 0.085∗ 0.824∗ 0.162∗ −875.565

(0.032) (0.027) (0.049) (0.043)
THN 0.040 0.163∗ 0.832∗ 0.146∗ −951.781

(0.032) (0.038) (0.035) (0.032)
5-minute RV 0.051 0.124∗ 0.629∗ 0.440∗ −398.610

(0.032) (0.026) (0.059) (0.076)
RVN 0.043 0.358∗ 0.558∗ 0.418∗ −222.531

(0.032) (0.047) (0.046) (0.047)
TH 0.040 0.087∗ 0.837∗ 0.147∗ −969.193

(0.034) (0.027) (0.045) (0.039)
THN 0.039 0.159∗ 0.842∗ 0.134∗ −1047.560

(0.033) (0.038) (0.033) (0.030)
ξ φ τ1 τ2 σ2

u π
5-minute RV −0.308∗ 0.710∗ −0.113∗ 0.083∗ 0.281∗ 0.939

(0.035) (0.048) (0.018) (0.011) (0.012)
RVN −0.882∗ 0.947∗ −0.110∗ 0.116∗ 0.171∗ 0.949

(0.044) (0.064) (0.016) (0.011) (0.008)
TH −0.482∗ 0.848∗ 0.089 0.389∗ 0.661∗ 0.961

(0.036) (0.070) (0.035) (0.024) (0.037)
THN −1.071∗ 0.883∗ −0.042 0.284∗ 0.785∗ 0.961

(0.043) (0.081) (0.035) (0.023) (0.037)
5-minute RV −0.276∗ 0.706∗ −0.108 0.080∗ 0.284∗ 0.940

(0.035) (0.048) (0.018) (0.011) (0.013)
RVN −0.842∗ 0.938∗ −0.106∗ 0.107∗ 0.187∗ 0.950

(0.044) (0.062) (0.017) (0.010) (0.009)
TH −0.535∗ 0.825∗ 0.107 0.429∗ 0.792∗ 0.958

(0.036) (0.072) (0.040) (0.025) (0.051)
THN −1.135∗ 0.857∗ −0.031 0.323∗ 0.946∗ 0.957

(0.043) (0.084) (0.039) (0.025) (0.045)
∗ indicates significance at the 5% level
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Table 3: Estimation results for 2007/09 (risk neutral)

νt ω β γ log likelihood
3-minute RV −− 0.140∗ 0.625∗ 0.442∗ −394.948

(0.027) (0.059) (0.075)
RVN −− 0.389∗ 0.541∗ 0.431∗ −182.333

(0.047) (0.046) (0.045)
TH −− 0.086∗ 0.824∗ 0.162∗ −876.421

(0.027) (0.048) (0.043)
THN −− 0.164∗ 0.831∗ 0.147∗ −952.592

(0.038) (0.035) (0.032)
5-minute RV −− 0.125∗ 0.628∗ 0.441∗ −399.757

(0.026) (0.059) (0.076)
RVN −− 0.359∗ 0.558∗ 0.418∗ −223.461

(0.047) (0.046) (0.047)
TH −− 0.087∗ 0.836∗ 0.148∗ −969.989

(0.027) (0.045) (0.039)
THN −− 0.160∗ 0.842∗ 0.134∗ −1048.332

(0.038) (0.034) (0.030)
ξ φ τ1 τ2 σ2

u π
5-minute RV −0.304∗ 0.710∗ −0.121∗ 0.083∗ 0.281∗ 0.939

(0.035) (0.048) (0.018) (0.011) (0.012)
RVN −0.878∗ 0.946∗ −0.120∗ 0.116∗ 0.171∗ 0.949

(0.044) (0.063) (0.017) (0.011) (0.008)
TH −0.485∗ 0.848∗ 0.056 0.389∗ 0.661∗ 0.961

(0.037) (0.070) (0.035) (0.024) (0.037)
THN −1.070∗ 0.882∗ −0.065 0.284∗ 0.785∗ 0.960

(0.043) (0.080) (0.032) (0.023) (0.037)
5-minute RV −0.272∗ 0.706∗ −0.116∗ 0.080∗ 0.285∗ 0.939

(0.034) (0.048) (0.018) (0.011) (0.013)
RVN −0.838∗ 0.938∗ −0.116∗ 0.107∗ 0.187∗ 0.950

(0.044) (0.062) (0.016) (0.010) (0.009)
TH −0.539∗ 0.825∗ 0.072 0.430∗ 0.792∗ 0.958

(0.038) (0.073) (0.108) (0.025) (0.051)
THN −1.134∗ 0.857∗ −0.057 0.324∗ 0.946∗ 0.957

(0.043) (0.084) (0.031) (0.025) (0.045)
∗ indicates significance at the 5% level
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Table 4: Results for put option pricing (risk neutral)

ME RMSE
BS 16.5834 72.7849
EG 18.0498 57.1486
RGAR 3-minute 5-minute 3-minute 5-minute
RV 19.5020 17.9068 60.1766 58.9808
RVN 20.8921 19.1401 63.5518 62.6261
TH 12.4174 11.8082 56.1470 56.1059
THN 6.4320 6.6921 ∗52.2518 ∗52.2166

MPE RMSPE
BS 0.3184 1.5708
EG 0.6139 1.5462
RGAR 3-minute 5-minute 3-minute 5-minute
RV 0.4795 0.4191 1.4730 1.2315
RVN 0.5111 0.4605 1.6140 1.4037
TH 0.2073 0.1951 1.4506 1.2747
THN 0.0901 0.0809 ∗0.6801 ∗0.6203

If the RMSE or RMSPE is smaller than that for the
EGARCH models, the values are in blue. ∗ indicates
the smallest RMSE or RMSPE.
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Table 5: Results for put option pricing

ME RMSE
BS 16.5834 72.7849
EG 17.0594 56.7497
RGAR 3-minute 5-minute 3-minute 5-minute
RV 14.3653 12.7962 53.1565 52.8324
RVN 13.5953 12.4255 55.6713 56.1590
TH 11.5681 11.5807 54.7771 55.6656
THN 6.4257 6.5209 ∗52.0057 ∗52.0249

MPE RMSPE
BS 0.3184 1.5708
EG 0.5212 1.3405
RGAR 3-minute 5-minute 3-minute 5-minute
RV 0.2144 0.2094 0.7562 0.7581
RVN 0.2099 0.2119 0.8492 0.8247
TH 0.1590 0.1757 0.8429 1.1084
THN 0.0792 0.0743 ∗0.6363 ∗0.6278

If the RMSE or RMSPE is smaller than that for the
EGARCH models, the values are in blue. ∗ indicates
the smallest RMSE or RMSPE.
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